Geometric Difference of Multivalued Maps
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of the finite-dimensional theorem about the upper semicontinuity of the geometric difference of continuous multivalued maps for separable Banach spaces is obtained. Sufficient conditions for the continuity of the geometric difference of multivalued maps in finite-dimensional spaces without the “nonempty interior” condition are obtained. Examples that demonstrate the unimprovability of these results are given.
@article{MZM_2001_70_2_a0,
author = {M. V. Balashov},
title = {Geometric {Difference} of {Multivalued} {Maps}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--169},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/}
}
M. V. Balashov. Geometric Difference of Multivalued Maps. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/