Geometric Difference of Multivalued Maps
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169
Cet article a éte moissonné depuis la source Math-Net.Ru
An analog of the finite-dimensional theorem about the upper semicontinuity of the geometric difference of continuous multivalued maps for separable Banach spaces is obtained. Sufficient conditions for the continuity of the geometric difference of multivalued maps in finite-dimensional spaces without the “nonempty interior” condition are obtained. Examples that demonstrate the unimprovability of these results are given.
@article{MZM_2001_70_2_a0,
author = {M. V. Balashov},
title = {Geometric {Difference} of {Multivalued} {Maps}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--169},
year = {2001},
volume = {70},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/}
}
M. V. Balashov. Geometric Difference of Multivalued Maps. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/
[1] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988
[2] Polovinkin E. S., Elementy teorii mnogoznachnykh otobrazhenii, Ucheb. posobie, MFTI, M., 1982
[3] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112:3 (1980), 307–330 | MR | Zbl
[4] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962
[5] Rokafellar R., Vypuklyi analiz, Mir, M., 1973