Geometric Difference of Multivalued Maps
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the finite-dimensional theorem about the upper semicontinuity of the geometric difference of continuous multivalued maps for separable Banach spaces is obtained. Sufficient conditions for the continuity of the geometric difference of multivalued maps in finite-dimensional spaces without the “nonempty interior” condition are obtained. Examples that demonstrate the unimprovability of these results are given.
@article{MZM_2001_70_2_a0,
     author = {M. V. Balashov},
     title = {Geometric {Difference} of {Multivalued} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - Geometric Difference of Multivalued Maps
JO  - Matematičeskie zametki
PY  - 2001
SP  - 163
EP  - 169
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/
LA  - ru
ID  - MZM_2001_70_2_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%T Geometric Difference of Multivalued Maps
%J Matematičeskie zametki
%D 2001
%P 163-169
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/
%G ru
%F MZM_2001_70_2_a0
M. V. Balashov. Geometric Difference of Multivalued Maps. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a0/

[1] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[2] Polovinkin E. S., Elementy teorii mnogoznachnykh otobrazhenii, Ucheb. posobie, MFTI, M., 1982

[3] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112:3 (1980), 307–330 | MR | Zbl

[4] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] Rokafellar R., Vypuklyi analiz, Mir, M., 1973