On a Question of M. Conder
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 79-87
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that $SL_3(\mathbb Z)$ cannot be generated by two elements of orders 2 and 3.
@article{MZM_2001_70_1_a9,
author = {J. N. Nuzhin},
title = {On a {Question} of {M.~Conder}},
journal = {Matemati\v{c}eskie zametki},
pages = {79--87},
year = {2001},
volume = {70},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/}
}
J. N. Nuzhin. On a Question of M. Conder. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/
[1] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd. 14, Novosibirsk, 1999
[2] Fricke R., Klein F., Vorlesungen über die Theorie der Elliptischen Modulfunktionen, V. 1, 2, Teubner, Leipzig, 1890
[3] Miller G. A., “On the groups generated by two operators”, Bull. AMS, 7 (1901), 424–426 | DOI
[4] Tamburini M. C., Wilson J. S., Gavioli N., “On the $(2,3)$-generation of some classical groups, I”, J. Algebra, 168 (1994), 353–370 | DOI | MR | Zbl
[5] Nuzhin Ya. N., “Porozhdayuschie elementy gruppy $PSL_n(\mathbb Z)$”, IV Mezhdunarodnaya algebraicheskaya konferentsiya, Tezisy dokl., Novosibirsk, 2000, 129–130
[6] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | Zbl