On a Question of M.~Conder
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 79-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $SL_3(\mathbb Z)$ cannot be generated by two elements of orders 2 and 3.
@article{MZM_2001_70_1_a9,
     author = {J. N. Nuzhin},
     title = {On a {Question} of {M.~Conder}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {79--87},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/}
}
TY  - JOUR
AU  - J. N. Nuzhin
TI  - On a Question of M.~Conder
JO  - Matematičeskie zametki
PY  - 2001
SP  - 79
EP  - 87
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/
LA  - ru
ID  - MZM_2001_70_1_a9
ER  - 
%0 Journal Article
%A J. N. Nuzhin
%T On a Question of M.~Conder
%J Matematičeskie zametki
%D 2001
%P 79-87
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/
%G ru
%F MZM_2001_70_1_a9
J. N. Nuzhin. On a Question of M.~Conder. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a9/

[1] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd. 14, Novosibirsk, 1999

[2] Fricke R., Klein F., Vorlesungen über die Theorie der Elliptischen Modulfunktionen, V. 1, 2, Teubner, Leipzig, 1890

[3] Miller G. A., “On the groups generated by two operators”, Bull. AMS, 7 (1901), 424–426 | DOI

[4] Tamburini M. C., Wilson J. S., Gavioli N., “On the $(2,3)$-generation of some classical groups, I”, J. Algebra, 168 (1994), 353–370 | DOI | MR | Zbl

[5] Nuzhin Ya. N., “Porozhdayuschie elementy gruppy $PSL_n(\mathbb Z)$”, IV Mezhdunarodnaya algebraicheskaya konferentsiya, Tezisy dokl., Novosibirsk, 2000, 129–130

[6] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | Zbl