Nonstandard Set Theory in $\in$-Language
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 46-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficiently convenient set theory in the standard $\in$-language applicable to nonstandard analysis is proposed.
@article{MZM_2001_70_1_a5,
     author = {V. G. Kanovei},
     title = {Nonstandard {Set} {Theory} in $\in${-Language}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {46--50},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a5/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - Nonstandard Set Theory in $\in$-Language
JO  - Matematičeskie zametki
PY  - 2001
SP  - 46
EP  - 50
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a5/
LA  - ru
ID  - MZM_2001_70_1_a5
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T Nonstandard Set Theory in $\in$-Language
%J Matematičeskie zametki
%D 2001
%P 46-50
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a5/
%G ru
%F MZM_2001_70_1_a5
V. G. Kanovei. Nonstandard Set Theory in $\in$-Language. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 46-50. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a5/

[1] Nelson E., “Internal set theory: a new approach to nonstandard analysis”, Bull. Amer. Math. Soc., 83 (1977), 1165–1198 | DOI | MR | Zbl

[2] Hrbaček K., “Axiomatic foundations for nonstandard analysis”, Fund. Math., 98 (1978), 1–19 | MR | Zbl

[3] Kanovei V., Reeken M., “Mathematics in a nonstandard world”, Math. Japonica, 45:2 (1997), 369–408 ; 3, 555–571 | MR | Zbl | MR | Zbl

[4] Kawaï T., “Nonstandard analysis by axiomatic methods”, Southeast Asia Conference on Logic (Singapore, 1981), Studies in Logic and Foundations of Math., 111, North-Holland, Amsterdam, 1983, 55–76

[5] Kusraev A. G., Kutateladze S. S., Nestandartnye metody analiza, Nauka, Novosibirsk, 1990