On the Similarity of Perturbed Multiplication Operators
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 38-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be the multiplication operator by an independent variable $x$ in $L_2(0,1)$, and let $V$ be an integral operator of Volterra type. In this note, we find sufficient conditions for the similarity of the operators $T:= S + V$ and $S$ and discuss some generalizations to an abstract setting of the results obtained.
@article{MZM_2001_70_1_a4,
     author = {R. O. Hryniv and Ya. V. Mikityuk},
     title = {On the {Similarity} of {Perturbed} {Multiplication} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--45},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a4/}
}
TY  - JOUR
AU  - R. O. Hryniv
AU  - Ya. V. Mikityuk
TI  - On the Similarity of Perturbed Multiplication Operators
JO  - Matematičeskie zametki
PY  - 2001
SP  - 38
EP  - 45
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a4/
LA  - ru
ID  - MZM_2001_70_1_a4
ER  - 
%0 Journal Article
%A R. O. Hryniv
%A Ya. V. Mikityuk
%T On the Similarity of Perturbed Multiplication Operators
%J Matematičeskie zametki
%D 2001
%P 38-45
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a4/
%G ru
%F MZM_2001_70_1_a4
R. O. Hryniv; Ya. V. Mikityuk. On the Similarity of Perturbed Multiplication Operators. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 38-45. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a4/

[1] Fridrikhs K., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[2] Faddeev L. D., “O modeli Fridrikhsa v teorii vozmuscheniya nepreryvnogo spektra”, Tr. MIAN, 73, Nauka, M., 1964, 292–313 | MR | Zbl

[3] Kokholm N. J., “Spectral analysis of perturbed multiplication operators occurring in polymerisation chemistry”, Proc. Roy. Soc. Edinburgh. Sect. A, 113:1–2 (1989), 119–148 | MR | Zbl

[4] Naboko S. N., Tretter C., “Lyapunov stability of a perturbed multiplication operator”, Contributions to Operator Theory in Spaces with an Indefinite Metric, The Heinz Langer Anniversary Volume on the Occasion of his 60th Birthday, Oper. Theory Adv. Appl., 106, Birkhäuser, Basel, 1998, 309–326 | MR | Zbl

[5] Freeman J. M., “Volterra operators similar to $J\:f(x)\mapsto \int _0^xf(y)\,dy$”, Trans. Amer. Math. Soc., 116 (1965), 181–192 | DOI | MR | Zbl

[6] Malamud M. M., “Podobie operatorov Volterra i svyazannye voprosy teorii differentsialnykh uravnenii drobnogo poryadka”, Tr. MMO, 55, URSS, M., 1994, 73–148 | MR | Zbl

[7] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1 (23) (1948), 3–95 | MR | Zbl

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[9] Khalmosh P., Sander V., Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | Zbl

[10] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[11] Schaefer H. H., Banach Lattices and Positive Operators, Springer, Berlin, 1974 | Zbl

[12] Malamud M. M., “O privedenii operatorov s nepreryvnym spektrom k diagonalnomu vidu”, UMN, 32:5 (1977), 167 | MR