On Some Automorphisms of Orthogonal Groups in Odd Characteristic
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 27-37
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, it is proved that the simple orthogonal groups $O_{2n+1}(q)$ and $O_{2n}^\pm (q)$ (where $q$ is odd) cannot be automorphism groups of finite left distributive quasigroups. This is a particular case of the conjecture stating that the automorphism group of a left distributive quasigroup is solvable. To complete the proof of the conjecture, one must test all finite groups.
@article{MZM_2001_70_1_a3,
author = {V. M. Galkin and N. V. Mokhnina},
title = {On {Some} {Automorphisms} of {Orthogonal} {Groups} in {Odd} {Characteristic}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--37},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a3/}
}
V. M. Galkin; N. V. Mokhnina. On Some Automorphisms of Orthogonal Groups in Odd Characteristic. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a3/