The Cohen--Lusk Conjecture
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of Cohen and Lusk about the partial gluing of an orbit under a map of a free $Z_p$-space to $\mathbb R^n$ is answered in part.
@article{MZM_2001_70_1_a2,
     author = {D. V. Bolotov},
     title = {The {Cohen--Lusk} {Conjecture}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--26},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a2/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - The Cohen--Lusk Conjecture
JO  - Matematičeskie zametki
PY  - 2001
SP  - 22
EP  - 26
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a2/
LA  - ru
ID  - MZM_2001_70_1_a2
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T The Cohen--Lusk Conjecture
%J Matematičeskie zametki
%D 2001
%P 22-26
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a2/
%G ru
%F MZM_2001_70_1_a2
D. V. Bolotov. The Cohen--Lusk Conjecture. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 22-26. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a2/

[1] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam Thereom”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[2] Cohen F., Lusk E. L., “Coinsidence point result for spaces with free $Z_p$-action”, Proc. Amer. Math. Soc., 49:1 (1975), 313–317 | DOI

[3] Volovikov A. Yu., “Otobrazheniya svobodnykh $Z_p$-prostranstv v mnogoobraziya”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 36–55 | MR | Zbl