Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_1_a13, author = {R. M. Trigub}, title = {Approximation of {Smooth} {Functions} and {Constants} by {Polynomials} with {Integer} and {Natural} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {123--136}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/} }
TY - JOUR AU - R. M. Trigub TI - Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients JO - Matematičeskie zametki PY - 2001 SP - 123 EP - 136 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/ LA - ru ID - MZM_2001_70_1_a13 ER -
R. M. Trigub. Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/
[1] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi koeffitsientami”, UMN, 10:1 (1955), 41–65 | MR | Zbl
[2] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 26:2 (1962), 261–280 | MR | Zbl
[3] Trigub R. M., “Priblizhenie funktsii s diofantovymi usloviyami mnogochlenami s tselymi koeffitsientami”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 2, Naukova dumka, Kiev, 1971, 267–333 | MR
[4] Ferguson B. O., Approximation by Polynomials with Integral Coefficients, Math. Surveys, 17, Amer. Math. Soc., Providence (R.I.), 1980 | MR | Zbl
[5] Trigub R. M., “Pryamye teoremy o priblizhenii algebraicheskimi polinomami gladkikh funktsii na otrezke”, Matem. zametki, 54:6 (1993), 113–121 | MR | Zbl
[6] Toland J. F., “Self-adjoint operators and cones”, J. London Math. Soc., 2:53 (1996), 167–183 | MR
[7] Trigub R. M., “On the approximation of functions by polynomials with positive coefficients”, East J. Approximation, 4:3 (1998), 379–389 | MR | Zbl
[8] Telyakovskii S. A., “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70:2 (1966), 252–265
[9] Gopengauz I. E., “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl
[10] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[11] Brudnyi Yu. A., “Timans type result on approximation by algebraic polynomials”, Operator Theory Adv. Appl., 98, 1997, 92–101 | MR | Zbl