Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients
Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct theorems on the approximation of smooth functions by polynomials with integer coefficients are strengthened. First theorems on approximation by polynomials with natural coefficients are obtained.
@article{MZM_2001_70_1_a13,
     author = {R. M. Trigub},
     title = {Approximation of {Smooth} {Functions} and {Constants} by {Polynomials} with {Integer} and {Natural} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients
JO  - Matematičeskie zametki
PY  - 2001
SP  - 123
EP  - 136
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/
LA  - ru
ID  - MZM_2001_70_1_a13
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients
%J Matematičeskie zametki
%D 2001
%P 123-136
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/
%G ru
%F MZM_2001_70_1_a13
R. M. Trigub. Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients. Matematičeskie zametki, Tome 70 (2001) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/MZM_2001_70_1_a13/

[1] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi koeffitsientami”, UMN, 10:1 (1955), 41–65 | MR | Zbl

[2] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 26:2 (1962), 261–280 | MR | Zbl

[3] Trigub R. M., “Priblizhenie funktsii s diofantovymi usloviyami mnogochlenami s tselymi koeffitsientami”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 2, Naukova dumka, Kiev, 1971, 267–333 | MR

[4] Ferguson B. O., Approximation by Polynomials with Integral Coefficients, Math. Surveys, 17, Amer. Math. Soc., Providence (R.I.), 1980 | MR | Zbl

[5] Trigub R. M., “Pryamye teoremy o priblizhenii algebraicheskimi polinomami gladkikh funktsii na otrezke”, Matem. zametki, 54:6 (1993), 113–121 | MR | Zbl

[6] Toland J. F., “Self-adjoint operators and cones”, J. London Math. Soc., 2:53 (1996), 167–183 | MR

[7] Trigub R. M., “On the approximation of functions by polynomials with positive coefficients”, East J. Approximation, 4:3 (1998), 379–389 | MR | Zbl

[8] Telyakovskii S. A., “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70:2 (1966), 252–265

[9] Gopengauz I. E., “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl

[10] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[11] Brudnyi Yu. A., “Timans type result on approximation by algebraic polynomials”, Operator Theory Adv. Appl., 98, 1997, 92–101 | MR | Zbl