The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 876-891.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a method for solving the mixed boundary-value problem for the Laplace equation in a connected exterior domain with an arbitrary partition of the boundary. All simple closed curves making up the boundary are divided into three sets. On the elements of the first set the Dirichlet condition is given, on the elements of the second set the third boundary condition is prescribed, and the third set, in turn, is divided into two subsets of simple closed arcs, with the Dirichlet condition prescribed on the elements of one of these subsets and the third boundary condition on the elements of the other subset. The problem is reduced to a uniquely solvable Fredholm equation of the second kind in a Banach space. The third boundary-value problem and the mixed Dirichlet–Neumann problem are particular cases of the problem under study.
@article{MZM_2001_69_6_a6,
     author = {P. A. Krutitskii},
     title = {The {Mixed} {Problem} for the {Laplace} {Equation} in an {Exterior} {Domain} with an {Arbitrary} {Partition} of the {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {876--891},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a6/}
}
TY  - JOUR
AU  - P. A. Krutitskii
TI  - The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary
JO  - Matematičeskie zametki
PY  - 2001
SP  - 876
EP  - 891
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a6/
LA  - ru
ID  - MZM_2001_69_6_a6
ER  - 
%0 Journal Article
%A P. A. Krutitskii
%T The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary
%J Matematičeskie zametki
%D 2001
%P 876-891
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a6/
%G ru
%F MZM_2001_69_6_a6
P. A. Krutitskii. The Mixed Problem for the Laplace Equation in an Exterior Domain with an Arbitrary Partition of the Boundary. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 876-891. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a6/

[1] Krutitskii P. A., “O smeshannoi zadache dlya uravneniya Gelmgoltsa v mnogosvyaznoi oblasti”, ZhVMiMF, 36:8 (1996), 127–137 | MR

[2] Krutitskii P. A., “Smeshannaya zadacha dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, Differents. uravneniya, 32:9 (1996), 1153–1162 | MR

[3] Krutitskii P. A., “Smeshannaya zadacha dlya uravneniya Laplasa vne razrezov na ploskosti”, Differents. uravneniya, 33:9 (1997), 1181–1190 | MR

[4] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh, Nauka, M., 1985

[5] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995 | Zbl

[6] Integralnye uravneniya, eds. Grinberg V. M., Tslaf L. Ya., Nauka, M.

[7] Homentcovschi D., “On the Dirichlet–Neumann mixed boundary value problem for harmonic functions in plane multiply connected domains”, Rev. Romaine Math. Pures Appl., 32:9 (1987), 801–810 | MR | Zbl

[8] Krutitskii P. A., “Fast stratified flow over several obstacles, including wings”, IMA J. Appl. Math., 57:3 (1996), 243–256 | DOI | MR

[9] Krutitskii P. A., “The 2-D Neumann problem in an exterior domain bounded by closed and open curves”, Math. Methods Appl. Sci., 20:18 (1997), 1551–1562 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[10] Krutitskii P. A., “Wave propagation in a 2-D external domain bounded by closed and open curves”, Nonlinear Analysis, Theory, Methods and Applications, 32:1 (1998), 135–144 | DOI | MR | Zbl

[11] Krutitskii P. A., “The Neumann problem for the 2-D Helmholtz equation in a domain, bounded by closed and open curves”, Internat. J. Math. Math. Sci., 21:2 (1998), 209–216 | DOI | MR | Zbl

[12] Krutitskii P. A., “The Dirichlet problem for the dissipative Helmholtz equation in a plane domain bounded by closed and open curves”, Hiroshima Math. J., 28:1 (1998), 149–168 | MR | Zbl

[13] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[14] Jacob C., Introduction mathematique a la mecanique des fluides, Bucarest–Paris, 1959

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981

[16] Krutitskii P. A., “Vtoraya nachalno-kraevaya zadacha dlya uravneniya gravitatsionno-giroskopicheskikh voln vo vneshnei oblasti”, Matem. zametki, 60:1 (1996), 40–57 | MR

[17] Krutitskii P. A., “Zadacha Dirikhle dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVMiMF, 34:8–9 (1994), 1237–1258 | MR

[18] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[19] Gabov S. A., “Uglovoi potentsial i ego nekotorye prilozheniya”, Matem. sb., 103 (145):4 (1977), 490–504 | MR | Zbl

[20] Krutitskii P. A., “Zadacha Neimana dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVMiMF, 34:11 (1994), 1652–1665 | MR

[21] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968

[22] Funktsionalnyi analiz, ed. Krein S. G., Nauka, M., 1964