The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 866-875.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem $$ u_{tt}+\varepsilon u_t+(1+\varepsilon\alpha\cos 2\tau)\sin u =\varepsilon\sigma^2u_{xx}, \qquad u_x|_{x=0}=u_x|_{x=\pi}=0, $$, where $0\varepsilon\ll1$, $\tau=(1+\varepsilon\delta)t$, $\alpha,\sigma>0$, and the sign of $\delta$ is arbitrary. It is proved that for an appropriate choice of the external parameters $\alpha$ and $\delta$ and for sufficiently small $\sigma$ the number of exponentially stable solutions $2\pi$-periodic in $\tau$ can be made equal to an arbitrary predefined number.
@article{MZM_2001_69_6_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The {Parametric} {Buffer} {Phenomenon} for a {Singularly} {Perturbed} {Telegraph} {Equation} with a {Pendulum} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--875},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
JO  - Matematičeskie zametki
PY  - 2001
SP  - 866
EP  - 875
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/
LA  - ru
ID  - MZM_2001_69_6_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
%J Matematičeskie zametki
%D 2001
%P 866-875
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/
%G ru
%F MZM_2001_69_6_a5
A. Yu. Kolesov; N. Kh. Rozov. The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 866-875. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[2] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976

[3] Kolesov A. Yu., Kolesov Yu. S., “Printsip svedeniya Bogolyubova–Mitropolskogo v zadache o parametricheskom vozbuzhdenii avtovoln”, Dokl. AN SSSR, 307:4 (1989), 837–840 | MR

[4] Kolesov Yu. S., “Nelineinyi parametricheskii rezonans v singulyarno vozmuschennom telegrafnom uravnenii”, Differents. uravneniya, 27:10 (1991), 1828–1829 | MR | Zbl

[5] Kolesov A. Yu., “Parametricheskie kolebaniya reshenii telegrafnogo uravneniya s umerenno maloi diffuziei”, Sib. matem. zh., 33:6 (1992), 79–86 | MR | Zbl

[6] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Matem. sb., 186:10 (1995), 57–72 | MR | Zbl

[7] Kolesov Yu. S., “Parametricheskie kolebaniya singulyarno vozmuschennogo telegrafnogo uravneniya s mayatnikovoi nelineinostyu”, Matem. sb., 189:3 (1998), 69–82 | MR | Zbl

[8] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Yavlenie parametricheskoi bufernosti v sistemakh parabolicheskikh i giperbolicheskikh uravnenii s maloi diffuziei”, Ukr. matem. zh., 50:1 (1998), 22–35 | MR | Zbl

[9] Kolesov A. Yu., Rozov N. Kh., “O suschestvovanii asimptoticheski bolshogo chisla ustoichivykh dissipativnykh struktur v parabolicheskikh sistemakh s maloi diffuziei”, Tr. sem. im. I. G. Petrovskogo, 20, Izd-vo Mosk. un-ta, M., 1997, 3–26 | MR | Zbl

[10] Glensdorf P., Prigozhin I., Termodinamicheskaya teoriya struktury, ustoichivosti i flyuktuatsii, Mir, M., 1973

[11] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973

[12] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[13] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, Dokl. AN SSSR, 315:2 (1990), 281–283 | MR | Zbl

[14] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998