The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 866-875

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem $$ u_{tt}+\varepsilon u_t+(1+\varepsilon\alpha\cos 2\tau)\sin u =\varepsilon\sigma^2u_{xx}, \qquad u_x|_{x=0}=u_x|_{x=\pi}=0, $$, where $0\varepsilon\ll1$, $\tau=(1+\varepsilon\delta)t$, $\alpha,\sigma>0$, and the sign of $\delta$ is arbitrary. It is proved that for an appropriate choice of the external parameters $\alpha$ and $\delta$ and for sufficiently small $\sigma$ the number of exponentially stable solutions $2\pi$-periodic in $\tau$ can be made equal to an arbitrary predefined number.
@article{MZM_2001_69_6_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The {Parametric} {Buffer} {Phenomenon} for a {Singularly} {Perturbed} {Telegraph} {Equation} with a {Pendulum} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--875},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
JO  - Matematičeskie zametki
PY  - 2001
SP  - 866
EP  - 875
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/
LA  - ru
ID  - MZM_2001_69_6_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
%J Matematičeskie zametki
%D 2001
%P 866-875
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/
%G ru
%F MZM_2001_69_6_a5
A. Yu. Kolesov; N. Kh. Rozov. The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 866-875. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a5/