Solvability of the Boundary-Value Problem for a Mathematical Model of Steady-State Flows of Nonlinear-Viscous Fluids
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 843-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an existence theorem for weak solutions of the boundary-value problem for steady-state equations describing both laminar and turbulent flows of nonlinear-viscous fluids.
@article{MZM_2001_69_6_a3,
     author = {V. T. Dmitrienko and V. G. Zvyagin},
     title = {Solvability of the {Boundary-Value} {Problem} for a {Mathematical} {Model} of {Steady-State} {Flows} of {Nonlinear-Viscous} {Fluids}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {843--853},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a3/}
}
TY  - JOUR
AU  - V. T. Dmitrienko
AU  - V. G. Zvyagin
TI  - Solvability of the Boundary-Value Problem for a Mathematical Model of Steady-State Flows of Nonlinear-Viscous Fluids
JO  - Matematičeskie zametki
PY  - 2001
SP  - 843
EP  - 853
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a3/
LA  - ru
ID  - MZM_2001_69_6_a3
ER  - 
%0 Journal Article
%A V. T. Dmitrienko
%A V. G. Zvyagin
%T Solvability of the Boundary-Value Problem for a Mathematical Model of Steady-State Flows of Nonlinear-Viscous Fluids
%J Matematičeskie zametki
%D 2001
%P 843-853
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a3/
%G ru
%F MZM_2001_69_6_a3
V. T. Dmitrienko; V. G. Zvyagin. Solvability of the Boundary-Value Problem for a Mathematical Model of Steady-State Flows of Nonlinear-Viscous Fluids. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 843-853. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a3/

[1] Landau L. D., Lifshits E. M., Gidrodinamika, Teoreticheskaya fizika, 6, Nauka, M., 1986

[2] Litvinov W. G., “Some models and problems for laminar and turbulent flows of viscous and nonlinear viscous fluids”, J. Math. Phys. Sci., 30:3 (1996), 101–157 | MR | Zbl

[3] Dmitrienko V. T., Zvyagin V. G., “Topological degree method in the equations of the Navier–Stokes type”, Abstract and Applied Analysis, 1–2 (1997), 1–45 | DOI | MR | Zbl

[4] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956

[5] Appell J., Zabrejko P. P., Nonlinear Superposition Operators, Cambridge Univ. Press, 1990 | Zbl

[6] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978