On a Class of Endotransitive Groups
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 944-949.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of the reduced endotransitive torsion-free groups whose kernels of endomorphisms satisfy the ascending chain condition and for which the type of any nonzero element is comparable with some maximal type in the set of types of all nonzero elements of the group.
@article{MZM_2001_69_6_a14,
     author = {A. R. Chekhlov},
     title = {On a {Class} of {Endotransitive} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {944--949},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a14/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On a Class of Endotransitive Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 944
EP  - 949
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a14/
LA  - ru
ID  - MZM_2001_69_6_a14
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On a Class of Endotransitive Groups
%J Matematičeskie zametki
%D 2001
%P 944-949
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a14/
%G ru
%F MZM_2001_69_6_a14
A. R. Chekhlov. On a Class of Endotransitive Groups. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 944-949. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a14/

[1] Dobrusin Yu. B., “O prodolzheniyakh chastichnykh endomorfizmov abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, no. 4, Tomsk, 1986, 36–53

[2] Dobrusin Yu. B., “O prodolzheniyakh chastichnykh endomorfizmov abelevykh grupp bez krucheniya, 2”, Abelevy gruppy i moduli, no. 5, Tomsk, 1985, 31–41

[3] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. matem. zh., 24:2 (1983), 77–84 | MR | Zbl

[4] Krylov P. A., “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika, 29:5 (1990), 549–560 | MR | Zbl

[5] Chekhlov A. R., “Svyaznye kvaziservantno in'ektivnye abelevy gruppy”, Izv. vuzov. Matem., 1989, no. 10, 84–87 | MR

[6] Arnold D. M., “Strongly homogeneous torsion-free abelian groups of finite rank”, Proc. Amer. Math. Soc., 56 (1976), 67–72 | DOI | MR | Zbl

[7] Dugas M., Shelah S., “$E$-transitive groups in $L$”, Contemp. Math., 87 (1989), 191–199 | MR | Zbl

[8] Hausen J., “$E$-transitive torsion-free abelian groups”, J. Algebra, 107:1 (1987), 17–27 | DOI | MR | Zbl

[9] Vinsonhaler C., Wickless W., “A generalization of quasi-pure injective torsion-free abelian groups of finite rank”, Houston J. Math., 22:3 (1996), 473–484 | MR | Zbl

[10] Bekker I. Kh., Krylov P. A., Chekhlov A. R., “Abelevy gruppy bez krucheniya, blizkie k algebraicheski kompaktnym”, Abelevy gruppy i moduli, no. 11–12, Tomsk, 1994, 3–52 | MR

[11] Mikhalev A. V., Mishina A. P., “Beskonechnye abelevy gruppy: metody i rezultaty”, Fundament. i prikl. matem., 1:2 (1995), 319–375 | MR | Zbl