Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 934-943
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the pointwise approximation of functions defined on the real semiaxis and having an $r$th derivative bounded almost everywhere. The approximation is performed by means of entire functions of bounded half-degree, which were introduced by S. N. Bernstein. An asymptotically sharp estimate for pointwise approximation of this class of functions is obtained.
@article{MZM_2001_69_6_a13,
author = {A. V. Tovstolis},
title = {Approximation of {Smooth} {Functions} on the {Semiaxis} by {Entire} {Functions} of {Bounded} {Half-Degree}},
journal = {Matemati\v{c}eskie zametki},
pages = {934--943},
publisher = {mathdoc},
volume = {69},
number = {6},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/}
}
TY - JOUR AU - A. V. Tovstolis TI - Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree JO - Matematičeskie zametki PY - 2001 SP - 934 EP - 943 VL - 69 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/ LA - ru ID - MZM_2001_69_6_a13 ER -
A. V. Tovstolis. Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 934-943. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/