Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree
Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 934-943.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the pointwise approximation of functions defined on the real semiaxis and having an $r$th derivative bounded almost everywhere. The approximation is performed by means of entire functions of bounded half-degree, which were introduced by S. N. Bernstein. An asymptotically sharp estimate for pointwise approximation of this class of functions is obtained.
@article{MZM_2001_69_6_a13,
     author = {A. V. Tovstolis},
     title = {Approximation of {Smooth} {Functions} on the {Semiaxis} by {Entire} {Functions} of {Bounded} {Half-Degree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {934--943},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/}
}
TY  - JOUR
AU  - A. V. Tovstolis
TI  - Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree
JO  - Matematičeskie zametki
PY  - 2001
SP  - 934
EP  - 943
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/
LA  - ru
ID  - MZM_2001_69_6_a13
ER  - 
%0 Journal Article
%A A. V. Tovstolis
%T Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree
%J Matematičeskie zametki
%D 2001
%P 934-943
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/
%G ru
%F MZM_2001_69_6_a13
A. V. Tovstolis. Approximation of Smooth Functions on the Semiaxis by Entire Functions of Bounded Half-Degree. Matematičeskie zametki, Tome 69 (2001) no. 6, pp. 934-943. http://geodesic.mathdoc.fr/item/MZM_2001_69_6_a13/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965

[2] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[3] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987

[4] Ibragimov I. I., Teoriya priblizheniya tselymi funktsiyami, Elm, Baku, 1979

[5] Bernshtein S. N., “Funktsii konechnoi stepeni i funktsii konechnoi polustepeni”, Sobranie sochinenii, T. 2, AN SSSR, M., 1954, 479–492

[6] Brudnyi Yu. A., “Priblizhenie tselymi funktsiyami na vneshnosti otrezka i poluosi”, Izv. AN SSSR. Ser. matem., 23:4 (1959), 595–612 | MR | Zbl

[7] Nikolskii S. M., “O nailuchshem priblizhenii mnogochlenami funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, Izv. AN SSSR. Ser. matem., 10:4 (1946), 295–322 | MR | Zbl

[8] Korneichuk N. P., Polovina A. I., “O priblizhenii nepreryvnykh differentsiruemykh funktsii algebraicheskimi polinomami na otrezke”, Dokl. AN SSSR, 166:2 (1966), 281–283 | MR

[9] Temlyakov V. N., “Priblizhenie funktsii iz klassa $W^1_\infty $ algebraicheskimi mnogochlenami”, Matem. zametki, 29:4 (1981), 597–602 | MR | Zbl

[10] Trigub R. M., “Pryamye teoremy o priblizhenii algebraicheskimi polinomami gladkikh funktsii na otrezke”, Matem. zametki, 54:6 (1993), 113–121 | MR | Zbl

[11] Bernshtein S. N., “O nailuchshem priblizhenii na vsei veschestvennoi osi pri pomoschi tselykh funktsii dannoi stepeni”, Sobranie sochinenii, T. 2, AN SSSR, M., 1954, 379–383