A Ring Variety without an Independent Basis
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 713-732

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of a ring variety without an independent basis is constructed. It is proved that this variety is the intersection of two independently based varieties.
@article{MZM_2001_69_5_a7,
     author = {V. Yu. Popov},
     title = {A {Ring} {Variety} without an {Independent} {Basis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--732},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a7/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - A Ring Variety without an Independent Basis
JO  - Matematičeskie zametki
PY  - 2001
SP  - 713
EP  - 732
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a7/
LA  - ru
ID  - MZM_2001_69_5_a7
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T A Ring Variety without an Independent Basis
%J Matematičeskie zametki
%D 2001
%P 713-732
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a7/
%G ru
%F MZM_2001_69_5_a7
V. Yu. Popov. A Ring Variety without an Independent Basis. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 713-732. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a7/