Embeddings in Lattice-$O^*$-Groups
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 708-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the following results are obtained: the existence of simple divisible lattice-$O^*$-groups is established (Theorem 2.1) and it is proved that any countable lattice-orderable or right-orderable group can be isomorphically embedded in a simple divisible lattice-$O^*$-group (Theorem 2.2 and Corollary 2.3).
@article{MZM_2001_69_5_a6,
     author = {N. Ya. Medvedev},
     title = {Embeddings in {Lattice-}$O^*${-Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {708--712},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a6/}
}
TY  - JOUR
AU  - N. Ya. Medvedev
TI  - Embeddings in Lattice-$O^*$-Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 708
EP  - 712
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a6/
LA  - ru
ID  - MZM_2001_69_5_a6
ER  - 
%0 Journal Article
%A N. Ya. Medvedev
%T Embeddings in Lattice-$O^*$-Groups
%J Matematičeskie zametki
%D 2001
%P 708-712
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a6/
%G ru
%F MZM_2001_69_5_a6
N. Ya. Medvedev. Embeddings in Lattice-$O^*$-Groups. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 708-712. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a6/

[1] Kopytov V. M., Medvedev N. Ya., Pravouporyadochennye gruppy, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | Zbl

[2] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | Zbl

[3] Kopytov V. M., Medvedev N. Ya., The Theory of Lattice-Ordered Groups, Kluwer Acad. Publ., Dordrecht–Boston–New York, 1994 | Zbl

[4] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | Zbl

[5] Holland C. W., “The lattice-ordered group of automorphisms of an ordered set”, Michigan Math. J., 10 (1963), 399–408 | DOI | MR | Zbl

[6] Lloyd J. T., Lattice-Ordered Groups and $o$-Permutation Groups, Ph. D. Thesis, Tulane University, New Orleans, 1964

[7] Gurevich Y., Holland C. W., “Recognizing the real line”, Trans. Amer. Math. Soc., 265 (1981), 527–534 | DOI | MR | Zbl

[8] Holland C. W., “Partial orders of the group of automorphisms of the real line”, Contemp. Math., 137 (1992), 197–207 | MR

[9] Giraudet M., Truss J. K., “On distiguishing quotients of ordered permutation groups”, Quart. J. Math. Oxford, 45 (1994), 181–209 | DOI | MR | Zbl

[10] Glass A. M. W., Ordered Permutation Groups, London Math. Soc. Lect. Notes. Ser., 55, Univ. Press, Cambridge, 1981 | MR | Zbl