Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_5_a3, author = {N. A. Il'yasov}, title = {On the {Order} of {Approximation} in the {Uniform} {Metric} by the {Fej\'er--Zygmund} {Means} on the {Classes} $E_p[\varepsilon]$}, journal = {Matemati\v{c}eskie zametki}, pages = {679--687}, publisher = {mathdoc}, volume = {69}, number = {5}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a3/} }
TY - JOUR AU - N. A. Il'yasov TI - On the Order of Approximation in the Uniform Metric by the Fej\'er--Zygmund Means on the Classes $E_p[\varepsilon]$ JO - Matematičeskie zametki PY - 2001 SP - 679 EP - 687 VL - 69 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a3/ LA - ru ID - MZM_2001_69_5_a3 ER -
%0 Journal Article %A N. A. Il'yasov %T On the Order of Approximation in the Uniform Metric by the Fej\'er--Zygmund Means on the Classes $E_p[\varepsilon]$ %J Matematičeskie zametki %D 2001 %P 679-687 %V 69 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a3/ %G ru %F MZM_2001_69_5_a3
N. A. Il'yasov. On the Order of Approximation in the Uniform Metric by the Fej\'er--Zygmund Means on the Classes $E_p[\varepsilon]$. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 679-687. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a3/
[1] Zygmund A., “The approximation of functions by typical means of their Fourier series”, Duke Math. J., 12:4 (1945), 695–704 | DOI | MR | Zbl
[2] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[3] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | Zbl
[4] Ilyasov N. A., “Priblizhenie periodicheskikh funktsii srednimi Zigmunda”, Matem. zametki, 39:3 (1986), 367–382 | MR | Zbl
[5] Ilyasov N. A., “O priblizhenii periodicheskikh funktsii srednimi Feiera–Zigmunda v raznykh metrikakh”, Matem. zametki, 48:4 (1990), 48–57 | MR | Zbl
[6] Ilyasov N. A., “Obratnaya teorema teorii priblizhenii v raznykh metrikakh”, Matem. zametki, 50:6 (1991), 57–65 | MR | Zbl
[7] Ilyasov N. A., “Priblizhenie srednimi Feiera–Zigmunda na nekotorykh klassakh periodicheskikh funktsii v $L_p$”, Trudy Azerb. matem. o-va, 2 (1996), 91–110 | MR
[8] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84 | MR
[9] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl
[10] Stechkin S. B., “Priblizhenie periodicheskikh funktsii summami Feiera”, Tr. Matem. in-ta AN SSSR, 62, Nauka, M., 1961, 48–60 | MR
[11] Timan M. F., “Nekotorye lineinye protsessy summirovaniya ryadov Fure i nailuchshee priblizhenie”, Dokl. AN SSSR, 145:4 (1962), 741–743 | MR
[12] Timan M. F., “Nailuchshee priblizhenie funktsii i lineinye metody summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 587–604 | MR | Zbl
[13] Trigub R. M., “Konstruktivnye kharakteristiki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 615–630 | MR
[14] Zhuk V. V., “O priblizhenii $2\pi $-periodicheskoi funktsii lineinym operatorom”, Sb. nauchnykh trudov Leningr. mekh. in-ta, no. 50, 1965, 93–115 | MR
[15] Ilyasov N. A., “K obratnoi teoreme teorii priblizhenii periodicheskikh funktsii v raznykh metrikakh”, Matem. zametki, 52:2 (1992), 53–61 | MR | Zbl
[16] Geit V. E., “O tochnosti nekotorykh neravenstv v teorii priblizhenii”, Matem. zametki, 10:5 (1971), 571–582 | MR | Zbl
[17] Geit V. E., “O strukturnykh i konstruktivnykh svoistvakh funktsii i ee sopryazhennoi v $L$”, Izv. vuzov. Matem., 1972, no. 7, 19–30 | MR | Zbl
[18] Geit V. E., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1972, no. 4, 67–77 | MR | Zbl
[19] Kolyada V. I., “Teoremy vlozheniya i neravenstva raznykh metrik dlya nailuchshikh priblizhenii”, Matem. sb., 102:2 (1977), 195–215 | MR | Zbl