Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 656-665

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain estimates of the orders of Kolmogorov widths of the Besov classes $B_{p,\theta}^r(\mathbb T^d)$ of periodic functions of several variables with dominant mixed derivative (defined in the sense of Weyl) in the space $L_q$, $r\in\mathbb R^d$, $1$, $0\theta\le\infty$. The proposed approach to calculating widths can also be used for finding the widths of the Sobolev classes $W_p^r(\mathbb T^d)$ (by embedding them in the Besov classes $B_{p,\theta}^r(\mathbb T^d)$) as well as for calculating some other widths (such as Alexandroff, linear, projective, and orthoprojective widths).
@article{MZM_2001_69_5_a1,
     author = {\`E. M. Galeev},
     title = {Widths of the {Besov} {Classes} $B_{p,\theta}^r(\mathbb T^d)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--665},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 656
EP  - 665
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/
LA  - ru
ID  - MZM_2001_69_5_a1
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
%J Matematičeskie zametki
%D 2001
%P 656-665
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/
%G ru
%F MZM_2001_69_5_a1
È. M. Galeev. Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 656-665. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/