Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 656-665.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain estimates of the orders of Kolmogorov widths of the Besov classes $B_{p,\theta}^r(\mathbb T^d)$ of periodic functions of several variables with dominant mixed derivative (defined in the sense of Weyl) in the space $L_q$, $r\in\mathbb R^d$, $1$, $0\theta\le\infty$. The proposed approach to calculating widths can also be used for finding the widths of the Sobolev classes $W_p^r(\mathbb T^d)$ (by embedding them in the Besov classes $B_{p,\theta}^r(\mathbb T^d)$) as well as for calculating some other widths (such as Alexandroff, linear, projective, and orthoprojective widths).
@article{MZM_2001_69_5_a1,
     author = {\`E. M. Galeev},
     title = {Widths of the {Besov} {Classes} $B_{p,\theta}^r(\mathbb T^d)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--665},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 656
EP  - 665
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/
LA  - ru
ID  - MZM_2001_69_5_a1
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$
%J Matematičeskie zametki
%D 2001
%P 656-665
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/
%G ru
%F MZM_2001_69_5_a1
È. M. Galeev. Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 656-665. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a1/

[1] Galeev E. M., “O lineinykh poperechnikakh klassov periodicheskikh funktsii mnogikh peremennykh”, Vestn. MGU. Ser. matem., mekh., 1987, no. 4, 13–16 | MR | Zbl

[2] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, Nauka, M., 1986, 3–113 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, T. I, II, Mir, M., 1965

[4] Galeev E. M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii mnogikh peremennykh $W_p^{\bar r}$ i $H_p^{\bar r}$ v prostranstve $L_q$”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 916–934 | MR | Zbl

[5] Galeev E. M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 418–430 | MR

[6] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_q$”, Ukr. matem. zh., 43:10 (1991), 1398–1408 | MR | Zbl

[7] Galeev E. M., “Approximation for Besov classes of periodic functions of several variables”, Tezisy dokl. mezhd. konf. po teorii approksimatsii (Kechkemet, Vengriya), 1990, 20

[8] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl

[9] Gluskin E. D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Matem. sb., 120 (1983), 120–189 | MR | Zbl

[10] Pietsch A., “$s$-numbers of operators in Banach spaces”, Stud. Math., 51:3 (1974), 201–223 | MR | Zbl

[11] Stesin M. I., “Aleksandrovskie poperechniki konechnomernykh mnozhestv i klassov gladkikh funktsii”, Dokl. AN SSSR, 220:6 (1975), 1278–1281 | MR | Zbl

[12] Kolmogorov A. N., Petrov A. A., Smirnov Yu. M., “Odna formula Gaussa iz teorii metoda naimenshikh kvadratov”, Izv. AN SSSR. Ser. matem., 11:6 (1947), 561–566 | MR | Zbl

[13] Maltsev A. I., “Zamechanie k rabote: A. N. Kolmogorov, A. A. Petrov, Yu. M. Smirnov, Odna formula Gaussa iz teorii naimenshikh kvadratov”, Izv. AN SSSR. Ser. matem., 11:6 (1947), 567–568 | MR | Zbl

[14] Stechkin S. B., “O nailuchshikh priblizheniyakh zadannykh klassov lyubymi polinomami”, UMN, 9:1 (1954), 133–134 | Zbl