Groups with Small Centralizers
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 643-655
Voir la notice de l'article provenant de la source Math-Net.Ru
Denote by $w(n)$ the number of factors in the representation of a positive integer $n$ in the form of a product of primes. For a subgroup $>H$ of a finite group $G$, we set $w(H)=w(|H|)$ and $v(G)=\max\{w(C(g))\mid g\in G\setminus Z(G)\}$. In the present paper, the complete description of centerfree groups satisfying the condition $v(G)= 4$ is presented.
@article{MZM_2001_69_5_a0,
author = {V. A. Antonov and I. A. Tyurina and A. P. Cheskidov},
title = {Groups with {Small} {Centralizers}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--655},
publisher = {mathdoc},
volume = {69},
number = {5},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/}
}
V. A. Antonov; I. A. Tyurina; A. P. Cheskidov. Groups with Small Centralizers. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 643-655. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/