Groups with Small Centralizers
Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 643-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $w(n)$ the number of factors in the representation of a positive integer $n$ in the form of a product of primes. For a subgroup $>H$ of a finite group $G$, we set $w(H)=w(|H|)$ and $v(G)=\max\{w(C(g))\mid g\in G\setminus Z(G)\}$. In the present paper, the complete description of centerfree groups satisfying the condition $v(G)= 4$ is presented.
@article{MZM_2001_69_5_a0,
     author = {V. A. Antonov and I. A. Tyurina and A. P. Cheskidov},
     title = {Groups with {Small} {Centralizers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--655},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - I. A. Tyurina
AU  - A. P. Cheskidov
TI  - Groups with Small Centralizers
JO  - Matematičeskie zametki
PY  - 2001
SP  - 643
EP  - 655
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/
LA  - ru
ID  - MZM_2001_69_5_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%A I. A. Tyurina
%A A. P. Cheskidov
%T Groups with Small Centralizers
%J Matematičeskie zametki
%D 2001
%P 643-655
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/
%G ru
%F MZM_2001_69_5_a0
V. A. Antonov; I. A. Tyurina; A. P. Cheskidov. Groups with Small Centralizers. Matematičeskie zametki, Tome 69 (2001) no. 5, pp. 643-655. http://geodesic.mathdoc.fr/item/MZM_2001_69_5_a0/

[1] Bianchi M., Manz O., “Groups with small centralizers of non-central elements”, Boll. Un. Mat. Ital., 4A:7 (1990), 365–370 | MR

[2] Scarselli A., “Gruppi con piccoli centralizzanti”, Boll. Un. Mat. Ital., 6B:7 (1992), 649–663 | MR

[3] Schmidt R., “Zentralisatorverbände endlicher Gruppen”, Rend. Sem. Math. Univ. Padova, 1970, no. 44, 97–131 | MR

[4] Vasileva A. V., “O tsentralizatornykh reshetkakh konechnykh prostykh grupp”, Sib. matem. zh., 18:2 (1977), 263–273 | MR

[5] Bloom D. M., “The subgroups of $PSL(3,q)$ for odd $q$”, Trans. Amer. Math. Soc., 127 (1967), 150–178 | DOI | MR | Zbl

[6] Gagen T. M., “Nekotorye voprosy teorii konechnykh grupp”, K teorii konechnykh grupp, Mir, M., 1979

[7] Huppert B., Endliche Gruppen, V. 1, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | Zbl

[8] Brauer R., Suzuki M., “On finite groups of even order whose $2$-Sylow group is a quaternion group”, Proc. Nat. Acad. Sci. USA, 45:12 (1959), 1757–1759 | DOI | MR | Zbl

[9] Suzuki M., “Two characteristic properties of ZT-groups”, Osaka Math. J., 15 (1963), 143–150 | MR | Zbl

[10] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968

[11] Suprunenko D. A., Gruppy matrits, Nauka, M., 1972

[12] Gorenstein D., Finite Groups, Harper and Row, New York, 1968 | Zbl