Quantum Algebraic Tori
Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 591-599.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, quantum algebraic tori over an arbitrary field are studied. A characterization of quantum algebraic tori in terms of exact sequences is given. A description of the center is obtained. In the case of roots of unity, a quantum torus defines a family of central simple algebras over the spectrum of the center. For quantum tori of dimension 2, systems of generating elements are constructed and defining relations are written out. The case of roots of unity is considered.
@article{MZM_2001_69_4_a6,
     author = {A. N. Panov},
     title = {Quantum {Algebraic} {Tori}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {591--599},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a6/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Quantum Algebraic Tori
JO  - Matematičeskie zametki
PY  - 2001
SP  - 591
EP  - 599
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a6/
LA  - ru
ID  - MZM_2001_69_4_a6
ER  - 
%0 Journal Article
%A A. N. Panov
%T Quantum Algebraic Tori
%J Matematičeskie zametki
%D 2001
%P 591-599
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a6/
%G ru
%F MZM_2001_69_4_a6
A. N. Panov. Quantum Algebraic Tori. Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 591-599. http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a6/

[1] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | Zbl

[2] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977

[3] Panov A. N., “Tela skruchennykh ratsionalnykh funktsii i telo ratsionalnykh funktsii na $GL_q(n,K)$”, Algebra i analiz, 7:1 (1995), 153–169 | MR | Zbl