Quasilinear Pursuit Differential Game with a Simple Dynamics under Phase Constraints
Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 581-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a fixed closed time interval we consider a quasilinear pursuit differential game with a convex compact target set under a phase constraint in the form of a convex closed set. We construct a convex compact guaranteed capture set similar to an alternating Pontryagin sum and define the guaranteed piecewise-programmed strategy of the pursuer ensuring the hitting of the target set by the phase vector satisfying the phase constraint in finite time. Under certain conditions, we prove the convergence of the constructed alternating sum in the Hausdorff metric to a convex compact set, which is an analog of the alternating Pontryagin integral for the differential game.
@article{MZM_2001_69_4_a5,
     author = {R. V. Konstantinov},
     title = {Quasilinear {Pursuit} {Differential} {Game} with a {Simple} {Dynamics} under {Phase} {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--590},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a5/}
}
TY  - JOUR
AU  - R. V. Konstantinov
TI  - Quasilinear Pursuit Differential Game with a Simple Dynamics under Phase Constraints
JO  - Matematičeskie zametki
PY  - 2001
SP  - 581
EP  - 590
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a5/
LA  - ru
ID  - MZM_2001_69_4_a5
ER  - 
%0 Journal Article
%A R. V. Konstantinov
%T Quasilinear Pursuit Differential Game with a Simple Dynamics under Phase Constraints
%J Matematičeskie zametki
%D 2001
%P 581-590
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a5/
%G ru
%F MZM_2001_69_4_a5
R. V. Konstantinov. Quasilinear Pursuit Differential Game with a Simple Dynamics under Phase Constraints. Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 581-590. http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a5/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985

[3] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112:3 (1980), 307–330 | MR | Zbl

[4] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980

[5] Polovinkin E. S., Elementy teorii mnogoznachnykh otobrazhenii, Uchebnoe posobie, MFTI, M., 1982