Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis
Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 515-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the fundamental problems in the theory of differentiation of integrals is the following. Let $X$ and $Y$ be two spaces which are different in some sense. Does there exist a differential basis that differentiates the space $X$, i.e., all integrals of functions from $X$, but not integrals of functions from $Y$, i.e., there exists a function from $Y$ whose integral cannot be differentiated by this basis. In this paper we construct a basis which differentiates the space $L^\infty$ but does not differentiate any other symmetric space $X\ne L^\infty$.
@article{MZM_2001_69_4_a1,
     author = {E. I. Berezhnoi and A. A. Perfil'ev},
     title = {Distinguishing {Between} {Symmetric} {Spaces} and $L^\infty$ by a {Differential} {Basis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--523},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
AU  - A. A. Perfil'ev
TI  - Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis
JO  - Matematičeskie zametki
PY  - 2001
SP  - 515
EP  - 523
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a1/
LA  - ru
ID  - MZM_2001_69_4_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%A A. A. Perfil'ev
%T Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis
%J Matematičeskie zametki
%D 2001
%P 515-523
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a1/
%G ru
%F MZM_2001_69_4_a1
E. I. Berezhnoi; A. A. Perfil'ev. Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis. Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 515-523. http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a1/

[1] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[2] Stokolos A. M., “On the differentiation of integrals of functions from $L\Phi (L)$”, Studia Math., 88 (1988), 103–120 | MR | Zbl

[3] Stokolos A. M., “On the differentiation of integrals of functions from Orlicz classes”, Studia Math., 94 (1989), 35–50 | MR | Zbl

[4] Berezhnoi E. I., “O differentsirovanii integralov ot funktsii iz simmetrichnykh prostranstv differentsialnymi bazisami”, Analysis Mathematica, 22 (1996), 267–288 | DOI | MR | Zbl

[5] Lebesgue A., “Sur l`integration des fonctions discontinues”, Ann. Sci. École Norm. Sup., 27 (1910), 361–450 | MR

[6] Jessen B., Marzinkiewicz J., Zygmund A., “Note on the differentiality of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl

[7] Zygmund A., “A note on the differentialility of multiple integrals”, Collog. Math., 16 (1967), 199–204 | MR | Zbl

[8] Saks S., “On the strong derivatives of functions of integrals”, Fund. Math., 25 (1935), 235–252 | Zbl

[9] Melero B., “A negative result in differentiation theory”, Studia Math., 72 (1982), 173–182 | MR | Zbl

[10] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1977