Isotropic Tori, Complex Germ and Maslov Index, Normal Forms and Quasimodes of Multidimensional Spectral Problems
Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 483-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

More than twenty years ago V. P. Maslov posed the question under what conditions it is possible to assign to invariant isotropic lower-dimensional tori of Hamiltonian systems sequences of asymptotic eigenvalues and eigenfunctions (spectral series) of the corresponding quantum mechanical and wave operators. In the present paper this question is answered in terms of the quadratic approximation to the theory of normal forms. We also discuss the quantization conditions for isotropic tori and their relation to topological, geometric, and dynamical characteristics (Maslov indices, rotation (winding) numbers, eigenvalues of dynamical flows, etc.).
@article{MZM_2001_69_4_a0,
     author = {V. V. Belov and O. S. Dobrokhotov and S. Yu. Dobrokhotov},
     title = {Isotropic {Tori,} {Complex} {Germ} and {Maslov} {Index,} {Normal} {Forms} and {Quasimodes} of {Multidimensional} {Spectral} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--514},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a0/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - O. S. Dobrokhotov
AU  - S. Yu. Dobrokhotov
TI  - Isotropic Tori, Complex Germ and Maslov Index, Normal Forms and Quasimodes of Multidimensional Spectral Problems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 483
EP  - 514
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a0/
LA  - ru
ID  - MZM_2001_69_4_a0
ER  - 
%0 Journal Article
%A V. V. Belov
%A O. S. Dobrokhotov
%A S. Yu. Dobrokhotov
%T Isotropic Tori, Complex Germ and Maslov Index, Normal Forms and Quasimodes of Multidimensional Spectral Problems
%J Matematičeskie zametki
%D 2001
%P 483-514
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a0/
%G ru
%F MZM_2001_69_4_a0
V. V. Belov; O. S. Dobrokhotov; S. Yu. Dobrokhotov. Isotropic Tori, Complex Germ and Maslov Index, Normal Forms and Quasimodes of Multidimensional Spectral Problems. Matematičeskie zametki, Tome 69 (2001) no. 4, pp. 483-514. http://geodesic.mathdoc.fr/item/MZM_2001_69_4_a0/

[1] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965; Асимптотические методы и теория возмущений, Наука, М., 1988

[2] Maslov V. P., Operatornye metody, Nauka, M., 1973

[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976

[4] Karasev M. V., Maslov V. P., “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (1984), 115–173 | MR | Zbl

[5] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona, Nauka, M., 1991 | Zbl

[6] Arnold V. I., “Mody i kvazimody”, Funktsion. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl

[7] Lazutkin V. F., KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993 | MR | Zbl

[8] Krakhnov A. D., “Postroenie asimptotiki sobstvennykh chisel operatora Laplasa, otvechayuschikh nevyrozhdennomu invariantnomu toru geodezicheskogo potoka”, Metody kachestvennoi teorii differentsialnykh uravnenii, no. 1, Izd-vo GGU, Gorkii, 1969, 66–74

[9] Colin de Verdière Y., “Spectre conjoint d'operateurs pseudo-differentiels qui commitent. II: Le cas integrable”, Math. Z., 171:1 (1980), 51–73 | DOI | MR | Zbl

[10] Kosygin D. M., Minasov A. A., Sinai Ya. G., “Statisticheskie svoistva spektra operatorov Beltrami–Laplasa na poverkhnostyakh Liuvillya”, UMN, 48:5 (1993), 3–130 | MR | Zbl

[11] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh sistem, Nauka, M., 1997

[12] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, MGU, M., 1988

[13] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[14] Maslov V. P., Shvedov O. Yu., Metod kompleksnogo rostka v kvantovoi teorii polya, URSS, M., 1998

[15] Belov V. V., Dobrokhotov S. Yu., “Kanonicheskii operator Maslova na izotropnykh mnogoobraziyakh s kompleksnym rostkom i ego prilozhenie k spektralnym zadacham”, Dokl. AN SSSR, 298:5 (1988), 1037–1042 | Zbl

[16] Belov V. V., Dobrokhotov S. Yu., “Kvaziklassicheskie asimptotiki Maslova s kompleksnymi fazami, I”, TMF, 92:2 (1992), 215–254 | MR

[17] Babich V. M., “Sobstvennye funktsii, sosredotochennye v okrestnosti zamknutoi geodezicheskoi”, Zapiski nauch. sem. LOMI, 9, Nauka, L., 1968, 15–63 | Zbl

[18] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972

[19] Dobrokhotov S. Yu., Maslov V. P., “Nekotorye prilozheniya teorii kompleksnogo rostka k uravneniyam s malym parametrom”, Itogi nauki i tekhniki. Sovr. probl. matematiki, 5, VINITI, M., 1975, 141–207

[20] Dobrokhotov S. Yu., Maslov V. P., “Mnogomernye ryady Dirikhle v mnogomernoi zadache ob asimptotike spektralnykh serii nelineinykh ellipticheskikh operatorov”, Itogi nauki i tekhniki. Sovr. probl. matematiki, 23, VINITI, M., 1983, 137–220 | MR

[21] Ralston J. V., “On the construction of quasimodes associated with stable periodic orbits”, Comm. Math. Phys., 51 (1976), 219–242 | DOI | MR | Zbl

[22] Valiño B., Dobrokhotov S. Yu., Nekhoroshev N. N., “Kompleksnyi rostok v sistemakh s odnoi tsiklicheskoi peremennoi”, UMN, 39:3 (1984), 233–239 | MR

[23] Dobrokhotov S. Yu., Martines-Olive V., “Zamknutye traektorii i dvumernye tory v kvantovoi spektralnoi zadache dlya trekhmernogo angarmonicheskogo ostsillyatora”, Tr. MMO, 58, URSS, M., 1997, 3–87 | MR | Zbl

[24] Dobrokhotov S. Yu., Martínez-Olivé V., Shafarevich A. I., “Closed trajectories and two-dimensional tori in the quantum problem for a three-dimensional resonant anharmonic oscillator”, Russian J. Math. Phys., 3:1 (1995), 133–138 | MR | Zbl

[25] Dobrokhotov S. Yu., Shafarevich A. I., Kvaziklassicheskoe kvantovanie izotropnykh mnogoobrazii gamiltonovykh sistem, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998

[26] Dobrokhotov S. Yu., Shafarevich A. I., “Quantum selection of isotropic tori of partially integrable hamiltonian systems in quasiclassical approximation”, Russian J. Math. Phys., 5:2 (1998), 267–272 | MR

[27] Vorobev Yu. M., “Kompleksnyi rostok Maslova, porozhdennyi lineinoi svyaznostyu”, Matem. zametki, 48:6 (1990), 29–37 | MR | Zbl

[28] Karasev M. V., “Novye globalnye asimptotiki i anomalii v zadachakh kvantovaniya adiabaticheskikh invariantov”, Funktsion. analiz i ego prilozh., 24:2 (1990), 24–36 | MR | Zbl

[29] Karasev M. V., Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, In-t teor. fiz. AN USSR, Kiev, 1988

[30] Karasev M. V., Vorob'ev Yu. M., “Symplectic curvature and Arnold form over isotropic submanifolds”, Algebra – 3, Math. Sci. Contemp. Math. Its Appl. (The Math. Issues), 21, 1995

[31] Karasev M. V., Vorob'ev Yu. M., “Adapted connections, Hamiltonian dynamics, geometric phases, and quantization over isotropic submanifolds”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Transl., 187, no. 2, Amer. Math. Soc., Providence, RI, 1998, 203–326 | MR | Zbl

[32] Vorob'ev Yu. M., “Ricatti equation over torus and semiclassical quantization of multiperiodic motion”, Quantization and Infinite Dimentional Systems, eds. J.-P. Antoine etc., Plenum Press, 1994, 205–212 | MR

[33] Vorobev Yu. M., Itskov V. A., “Kvazimody, otvechayuschie pochti periodicheskomu dvizheniyu ustoichivogo tipa”, Matem. zametki, 55:5 (1994), 36–42 | MR | Zbl

[34] Bryuno A. D., Ogranichennaya zadacha trekh tel, Nauka, M., 1992

[35] Broer H. W., Huitema G. B., Sevryuk M. B., Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Note in Math., 1645, Springer, Berlin, 1996 | MR

[36] Fink A. M., Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer-Verlag, Berlin, 1974 | MR | Zbl

[37] Arnold V. I., “O rozhdenii uslovno-periodicheskogo dvizheniya iz semeistva periodicheskikh dvizhenii”, Dokl. AN SSSR, 138:1 (1961), 13–15 | MR | Zbl

[38] Dinaburg E. N., Sinai Ya. G., “Ob odnomernom uravnenii Shredingera s kvaziperiodicheskim potentsialom”, Funktsion. analiz i ego prilozh., 9:4 (1975), 8–21 | MR | Zbl

[39] Eliasson L. H., “Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation”, Comm. Math. Phys., 146:3 (1992), 447–482 | DOI | MR | Zbl

[40] Rüssmann H., Invariant Tori in the Perturbation Theory of Weakly Non-Degenerate Integrable Hamilton Systems, Preprint No 14, Johannes Gutenberg-Universität Mainz, 1998

[41] Kuksin S. B., “Privodimye uravneniya v variatsiyakh i vozmuscheniya invariantnykh torov gamiltonovykh sistem”, Matem. zametki, 45:5 (1989), 38–49 | MR

[42] Johnson R., Mozer J., “The rotation number for almost periodic potentials”, Comm. Math. Phys., 84 (1982), 403–438 | DOI | MR | Zbl

[43] Johnson R. A., Sell G. R., “Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems”, J. Differential Equations, 1981, no. 4, 262–288 | DOI | Zbl

[44] Avron J., Simon B., “Almost periodic Hill's equation and rings of Saturn”, Phys. Rev. Lett., 46:17 (1981), 1166–1168 | DOI | MR

[45] Jorba A., Simó C., “On quasiperiodic perturbations of elliptic equilibrium points”, SIAM J. Math. Anal., 27 (1996), 1704–1737 | DOI | MR | Zbl

[46] Jorba A., Villanueva J., “On the normal behavior of partially elliptic lower-dimensional tori of Hamiltonian systems”, Nonlinearity, 10 (1997), 783–822 | DOI | MR | Zbl

[47] Jorba A., de la Llave R., Zou M., “Linstedt series for lower dimensional tori of hamiltonian systems with three or more degrees of freedom”, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. (S Agaro, Spain, June 1995), ed. C. Simo, Kluwer, Dordrecht, 1990

[48] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[49] Dobrokhotov S. Yu., “Integrirovanie v kvadraturakh $2n$-mernykh lineinykh gamiltonovykh sistem s $n$ izvestnymi kosoortogonalnymi resheniyami”, UMN, 53:2 (1998), 143–144 | MR | Zbl

[50] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[51] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UGU, Izhevsk, 1995 | Zbl

[52] Dubnov V. L., Maslov V. P., Nazaikinskii V. E., “The complex Lagrangian germ and the canonical operator”, Russian J. Math. Phys., 3:2 (1995), 141–190 | MR | Zbl

[53] Arnold V. I., “O kharakteristicheskom klasse, vkhodyaschem v uslovie kvantovaniya”, Funktsion. analiz i ego prilozh., 1:1 (1967), 1–114 | MR

[54] Dobrokhotov S. Yu., Krakhnov A. D., Vorob'ev Yu. M., “On topological quantization conditions for isotropic submanifolds of non-complete dimension”, Proc. Int. Topological Conf., Baku, 1987, 75

[55] Vorob'ev Yu. M., Nazaikinskii V. E., “On the cycle of singularities of isotropic submanifolds”, Russian J. Math. Phys., 5:1 (1997), 1–4 | MR

[56] Nekhoroshev N. N., “Teorema Puankare–Lyapunova–Liuvillya–Arnolda”, Funktsion. analiz i ego prilozh., 28 (1994), 67–69 | MR | Zbl

[57] Nekhoroshev N. N., “Peremennye deistviya-ugol i ikh obobschenie”, Tr. MMO, 26, URSS, M., 1972, 181–198 | MR | Zbl

[58] Belov V. V., Maksimov V. A., “Kvazimody dvukh svyazannykh nelineinykh ostsillyatorov”, Matem. zametki, 64:2 (1998), 297–301 | MR | Zbl

[59] Belov V. V., Maksimov V. A., “Stable quasimodes of the Schrödinger operator with homogeneous potential”, Russian J. Math. Phys., 7:3 (2000), 363–370 | MR | Zbl

[60] Gelfand I. M., Lidskii V. B., “O strukture oblastei ustoichivosti lineinykh kanonicheskikh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, UMN, 10:1 (1955), 3–40 | MR | Zbl

[61] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo MGU, M., 1983

[62] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | Zbl

[63] Voros A., “The WKB-Maslov method for nonseparable systems”, Ann. Inst. H. Poincaré, 38:1 (1977)

[64] Rofe-Beketov F. S., “K voprosu ob otsenke rosta reshenii kanonicheskikh pochti periodicheskikh sistem”, Matem. fizika, analiz, geometriya, 1:1 (1994), 139–148 | MR | Zbl

[65] Rofe-Beketov F. S., “Konstanty tipa Knezera i effektivnye massy dlya zonnykh potentsialov”, Dokl. AN SSSR, 276:2 (1984), 356–359 | MR | Zbl

[66] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | Zbl

[67] Berry M. V., “Semiclassical mechanics of regular and irregular motion”, Chaotic Behavior of Deterministic Systems, Session 36 (Les Houches, 1981), North-Holland Publishing Co., 1983, 171–271 | MR

[68] Duistermaat J. J., Guillemin V. W., “The spectrum of positive operators and periodic bicharacteristics”, Invent. Math., 29:1 (1983), 63–74 | MR

[69] Gutzwiller M. C., Chaos in Classical and Quantum Mechanics, Springer-Verlag, New York, 1992

[70] Shnirelman A. I., “On the asymptotic propertyies of eigenfunctions in the regions of chaotic motion”, Addenum to book: Lazutkin V. F., KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, 313–337 | MR

[71] Maslov V. P., Mischenko A. S., “Kvaziklassicheskaya asimptotika kvazichastits”, Matem. sb., 189:6 (1998), 85–116 | MR | Zbl

[72] Maslov V. P., “Deterministic quantum chaos for systems of bosons and fermions”, Russian J. Math. Phys., 5:4 (1998), 473–488

[73] Zhuravlev V. F., “Novyi algoritm normalizatsii gamiltonovykh sistem po Birkgofu”, PMM, 61:1 (1997), 12–17 | MR | Zbl

[74] Pavlenko Yu. G., Gamiltonovy metody v elektrodinamike i kvantovoi mekhanike, MGU, M., 1985

[75] Dobrokhotov S. Yu., Kolokoltsov V. N., Olive V. M., “Asimptoticheskie ustoichivye invariantnye tory vektornogo polya $V(x)$ i kvazimody operatora $V(x)\cdot\nabla-\varepsilon\Delta$”, Matem. zametki, 58:2 (1995), 301–306 | MR | Zbl