On the Properties of Plesio-Uniform Subgroups in Lie Groups
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 338-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of properties of a class of subgroups $H$ in Lie groups $G$ that was recently introduced by the author. A closed subgroup $H$ in a Lie group $G$ is said to be plesio-uniform if there is a closed subgroup $P$ of $G$ that contains $H$ and for which $P$ is uniform in $G$ and $H$ is quasi-uniform in $P$. In the paper we give answers to several natural questions concerning plesio-uniform subgroups. It is proved that one obtains the same notion of plesio-uniformity when transposing the conditions of uniformity and quasi-uniformity in the definition of plesio-uniformity of a subgroup. If a closed subgroup $H$ of $G$ contains a plesio-uniform subgroup, then $H$ is also plesio-uniform. Other properties of plesio-uniform subgroups are also considered.
@article{MZM_2001_69_3_a2,
     author = {V. V. Gorbatsevich},
     title = {On the {Properties} of {Plesio-Uniform} {Subgroups} in {Lie} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {338--345},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the Properties of Plesio-Uniform Subgroups in Lie Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 338
EP  - 345
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a2/
LA  - ru
ID  - MZM_2001_69_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the Properties of Plesio-Uniform Subgroups in Lie Groups
%J Matematičeskie zametki
%D 2001
%P 338-345
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a2/
%G ru
%F MZM_2001_69_3_a2
V. V. Gorbatsevich. On the Properties of Plesio-Uniform Subgroups in Lie Groups. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 338-345. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a2/

[1] Gorbatsevich V. V., “O pleziokompaktnykh odnorodnykh prostranstvakh, I”, Sib. matem. zh., 30:2 (1989), 61–72 | MR | Zbl

[2] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravleniya, VINITI, M., 1988, 103–240 | MR

[3] Gorbatsevich V. V., “O pleziokompaktnykh odnorodnykh prostranstvakh, II”, Sib. matem. zh., 32:2 (1991), 13–25 | MR | Zbl

[4] Gorbatsevich V. V., “Rassloenie Zeiferta dlya pleziokompaktnogo odnorodnogo prostranstva”, Sib. matem. zh., 37:2 (1996), 301–313 | MR | Zbl

[5] Mostow G., “Factor spaces of solvable groups”, Ann. Math., 60:1 (1954), 1–27 | DOI | MR | Zbl

[6] Gorbatsevich V. V., “O nekotorykh klassakh odnorodnykh prostranstv, blizkikh k kompaktnym”, Dokl. AN SSSR, 303:4 (1988), 785–788

[7] Gorbatsevich V. V., “Rasscheplenie grupp Li i ego primeneniya k izucheniyu odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 43:6 (1979), 1227–1258 | MR | Zbl

[8] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravleniya, 41, VINITI, M., 1990, 5–258 | MR

[9] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977

[10] Wang S. P., “Homogeneous spaces with finite invariant measure”, Amer. J. Math., 98:2 (1973), 311–324 | DOI

[11] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. Amer. Math. Soc., 79:2 (1973), 227–261 | DOI | MR | Zbl