Volume of the Intersection of Three Spheres
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 466-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

The volume of the intersection of three spheres is represented as a continuous piecewise analytic combination of algebraic and inverse trigonometric functions of the radii and the distances between the centers of the spheres.
@article{MZM_2001_69_3_a13,
     author = {L. S. Chkhartishvili},
     title = {Volume of the {Intersection} of {Three} {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {466--476},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a13/}
}
TY  - JOUR
AU  - L. S. Chkhartishvili
TI  - Volume of the Intersection of Three Spheres
JO  - Matematičeskie zametki
PY  - 2001
SP  - 466
EP  - 476
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a13/
LA  - ru
ID  - MZM_2001_69_3_a13
ER  - 
%0 Journal Article
%A L. S. Chkhartishvili
%T Volume of the Intersection of Three Spheres
%J Matematičeskie zametki
%D 2001
%P 466-476
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a13/
%G ru
%F MZM_2001_69_3_a13
L. S. Chkhartishvili. Volume of the Intersection of Three Spheres. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 466-476. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a13/

[1] Bohr N., “On the constitution of atoms and molecules”, Phil. Mag., 26 (1913), 1–25; 476–502; 857–875

[2] Bagchi B., Holody P., “An interesting application of Bohr theory”, Amer. J. Phys., 56 (1988), 746–747 | DOI

[3] Kolomiets V. M., Priblizhenie lokalnoi plotnosti v atomnoi i yadernoi fizike, Naukova dumka, Kiev, 1990 | Zbl

[4] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[5] Elyutin P. V., Krivchenkov V. D., Kvantovaya mekhanika s zadachami, Nauka, M., 1976

[6] Holland B. T., Blanford Ch. F., Stein A., “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids”, Science, 281 (1998), 538–540 | DOI

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | Zbl