Maximum Matchings in the $n$-Dimensional Cube
Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 454-465
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of efficient computation of maximum matchings in the $n$-dimensional cube, which is applied in coding theory, is solved. For an odd $n$, such a matching can be found by the method given in our Theorem 2. This method is based on the explicit construction (Theorem 1) of the maps of the vertex set that induce largest matchings in any bipartite subgraph of the $n$-dimensional cube for any $n$.
@article{MZM_2001_69_3_a12,
author = {V. E. Tarakanov},
title = {Maximum {Matchings} in the $n${-Dimensional} {Cube}},
journal = {Matemati\v{c}eskie zametki},
pages = {454--465},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a12/}
}
V. E. Tarakanov. Maximum Matchings in the $n$-Dimensional Cube. Matematičeskie zametki, Tome 69 (2001) no. 3, pp. 454-465. http://geodesic.mathdoc.fr/item/MZM_2001_69_3_a12/