Estimates for the Rate of Convergence of the Galerkin Method for Abstract Hyperbolic Equations
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 223-234
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the rate of convergence of the semidiscrete Galerkin method for linear hyperbolic equations in a Hilbert space. We establish asymptotic estimates for the error arising as a result of the arbitrariness in the choice of subspaces in which the approximation problems are solved.
@article{MZM_2001_69_2_a6,
author = {S. E. Zhelezovsky},
title = {Estimates for the {Rate} of {Convergence} of the {Galerkin} {Method} for {Abstract} {Hyperbolic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {223--234},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a6/}
}
TY - JOUR AU - S. E. Zhelezovsky TI - Estimates for the Rate of Convergence of the Galerkin Method for Abstract Hyperbolic Equations JO - Matematičeskie zametki PY - 2001 SP - 223 EP - 234 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a6/ LA - ru ID - MZM_2001_69_2_a6 ER -
S. E. Zhelezovsky. Estimates for the Rate of Convergence of the Galerkin Method for Abstract Hyperbolic Equations. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 223-234. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a6/