Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 214-222
Cet article a éte moissonné depuis la source Math-Net.Ru
An exact upper estimate is obtained for the dimension of the automorphism group of a 2-dimensional hypersurface in $\mathbb C^3$ possessing a Lie group structure.
@article{MZM_2001_69_2_a5,
author = {A. E. Ershova},
title = {Automorphisms of {2-Nondegenerate} {Hypersurfaces} in $\mathbb C^3$},
journal = {Matemati\v{c}eskie zametki},
pages = {214--222},
year = {2001},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/}
}
A. E. Ershova. Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 214-222. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/
[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR
[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl
[3] Stanton N. K., “Infinitesimal CR automorphisms of real hypersurfaces”, Amer. J. Math., 118:1 (1996), 209–233 | DOI | MR | Zbl
[4] Ebenfelt P., “Normal forms and biholomorphic equivalence of real hypersurfaces in $\mathbb C^3$”, Indiana Univ. Math. J., 42 (1998), 311–366 | MR
[5] Beloshapka V. K., “Automorphisms of degenerate hypersurfaces in $\mathbb C^2$ and a dimension conjecture”, Russian J. Math. Phys., 4:3 (1997), 393–396 | MR