Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 214-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact upper estimate is obtained for the dimension of the automorphism group of a 2-dimensional hypersurface in $\mathbb C^3$ possessing a Lie group structure.
@article{MZM_2001_69_2_a5,
     author = {A. E. Ershova},
     title = {Automorphisms of {2-Nondegenerate} {Hypersurfaces} in $\mathbb C^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--222},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/}
}
TY  - JOUR
AU  - A. E. Ershova
TI  - Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 214
EP  - 222
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/
LA  - ru
ID  - MZM_2001_69_2_a5
ER  - 
%0 Journal Article
%A A. E. Ershova
%T Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$
%J Matematičeskie zametki
%D 2001
%P 214-222
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/
%G ru
%F MZM_2001_69_2_a5
A. E. Ershova. Automorphisms of 2-Nondegenerate Hypersurfaces in $\mathbb C^3$. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 214-222. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a5/

[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR

[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl

[3] Stanton N. K., “Infinitesimal CR automorphisms of real hypersurfaces”, Amer. J. Math., 118:1 (1996), 209–233 | DOI | MR | Zbl

[4] Ebenfelt P., “Normal forms and biholomorphic equivalence of real hypersurfaces in $\mathbb C^3$”, Indiana Univ. Math. J., 42 (1998), 311–366 | MR

[5] Beloshapka V. K., “Automorphisms of degenerate hypersurfaces in $\mathbb C^2$ and a dimension conjecture”, Russian J. Math. Phys., 4:3 (1997), 393–396 | MR