On Lebesgue Functions of Uniformly Bounded Orthonormal Systems
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 181-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complement to A. M. Olevskii's fundamental inequality on the logarithmic growth of Lebesgue functions of an arbitrary uniformly bounded orthonormal system on a set of positive measure is made. Namely, the index where the Lebesgue functions have growth slightly weaker than logarithmic can be chosen independently of the variable. The theorem proved in this paper improves a result established earlier by the author.
@article{MZM_2001_69_2_a2,
     author = {R. D. Getsadze},
     title = {On {Lebesgue} {Functions} of {Uniformly} {Bounded} {Orthonormal} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--193},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a2/}
}
TY  - JOUR
AU  - R. D. Getsadze
TI  - On Lebesgue Functions of Uniformly Bounded Orthonormal Systems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 181
EP  - 193
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a2/
LA  - ru
ID  - MZM_2001_69_2_a2
ER  - 
%0 Journal Article
%A R. D. Getsadze
%T On Lebesgue Functions of Uniformly Bounded Orthonormal Systems
%J Matematičeskie zametki
%D 2001
%P 181-193
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a2/
%G ru
%F MZM_2001_69_2_a2
R. D. Getsadze. On Lebesgue Functions of Uniformly Bounded Orthonormal Systems. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 181-193. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a2/

[1] Olevskii A. M., “Ryady Fure nepreryvnykh funktsii po ogranichennym ortonormalnym sistemam”, Izv. AN SSSR. Ser. matem., 30 (1966), 387–432 | MR | Zbl

[2] Olevskii A. M., “O poryadke rosta funktsii Lebega ogranichennykh ortonormirovannykh sistem”, Dokl. AN SSSR. Ser. matem., 176 (1967), 1247–1250 | MR | Zbl

[3] Olevsky A. M., Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin, 1975

[4] Getsadze R. D., “O raskhodimosti po mere kratnykh ortogonalnykh ryadov Fure”, Tr. MIAN, 190, Nauka, M., 1989, 75–87 | MR

[5] Bochkarev S. V., “Logarifmicheskii rost srednikh arifmeticheskikh ot funktsii Lebega ogranichennykh ortonormirovannykh sistem”, Dokl. AN SSSR, 233 (1975), 16–19

[6] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl