Generalization of the Berezin Formula to the Noncommutative Case
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 295-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the help of functional integrals in Fock space, under some analytical assumptions, we construct representations for exponents of quadratic functions of creation and annihilation operators with noncommuting coefficients.
@article{MZM_2001_69_2_a12,
     author = {A. G. Tokarev},
     title = {Generalization of the {Berezin} {Formula} to the {Noncommutative} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--302},
     year = {2001},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a12/}
}
TY  - JOUR
AU  - A. G. Tokarev
TI  - Generalization of the Berezin Formula to the Noncommutative Case
JO  - Matematičeskie zametki
PY  - 2001
SP  - 295
EP  - 302
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a12/
LA  - ru
ID  - MZM_2001_69_2_a12
ER  - 
%0 Journal Article
%A A. G. Tokarev
%T Generalization of the Berezin Formula to the Noncommutative Case
%J Matematičeskie zametki
%D 2001
%P 295-302
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a12/
%G ru
%F MZM_2001_69_2_a12
A. G. Tokarev. Generalization of the Berezin Formula to the Noncommutative Case. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 295-302. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a12/

[1] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965

[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, T. 1, IL, M., 1962

[3] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[4] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, MGU, M., 1990

[5] Smolyanov O. G., “Beskonechnomernye psevdodifferentsialnye operatory i kvantovanie po Shredingeru”, Dokl. AN SSSR, 263:3 (1982), 558–561 | MR

[6] Smolyanov O. G., Khrennikov A. Yu., “Algebra beskonechnomernykh psevdodifferentsialnykh operatorov”, Dokl. AN SSSR, 292:6 (1987), 1310–1314 | MR | Zbl

[7] Smolyanov O. G., Weizsaecker H. V., “Smooth probability measures and associated differential operators”, Infinitely Dimensional Analysis. Quantum Probability and Related Topics, 2:1 (1999), 51–79 | DOI | MR