On the Eigenvalues and Eigenfunctions of the Sturm–Liouville Operator with a Singular Potential
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 277-285
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider the Sturm–Liouville operators generated by the differential expression $-y+q(x)y$ and by Dirichlet boundary conditions on the closed interval $[0,\pi]$. Here $q(x)$ is a distribution of first order, i.e., $\int q(x)dx\in L_2[0,\pi]$. Asymptotic formulas for the eigenvalues and eigenfunctions of such operators which depend on the smoothness degree of $q(x)$ are obtained.
@article{MZM_2001_69_2_a10,
author = {A. M. Savchuk},
title = {On the {Eigenvalues} and {Eigenfunctions} of the {Sturm{\textendash}Liouville} {Operator} with a {Singular} {Potential}},
journal = {Matemati\v{c}eskie zametki},
pages = {277--285},
year = {2001},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a10/}
}
A. M. Savchuk. On the Eigenvalues and Eigenfunctions of the Sturm–Liouville Operator with a Singular Potential. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 277-285. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a10/
[1] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[2] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl
[3] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl
[4] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 190–229 | MR
[5] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965
[6] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | Zbl