On the Eigenvalues and Eigenfunctions of the Sturm--Liouville Operator with a Singular Potential
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 277-285
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the Sturm–Liouville operators generated by the differential expression $-y+q(x)y$ and by Dirichlet boundary conditions on the closed interval $[0,\pi]$. Here $q(x)$ is a distribution of first order, i.e., $\int q(x)dx\in L_2[0,\pi]$. Asymptotic formulas for the eigenvalues and eigenfunctions of such operators which depend on the smoothness degree of $q(x)$ are obtained.
@article{MZM_2001_69_2_a10,
author = {A. M. Savchuk},
title = {On the {Eigenvalues} and {Eigenfunctions} of the {Sturm--Liouville} {Operator} with a {Singular} {Potential}},
journal = {Matemati\v{c}eskie zametki},
pages = {277--285},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a10/}
}
TY - JOUR AU - A. M. Savchuk TI - On the Eigenvalues and Eigenfunctions of the Sturm--Liouville Operator with a Singular Potential JO - Matematičeskie zametki PY - 2001 SP - 277 EP - 285 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a10/ LA - ru ID - MZM_2001_69_2_a10 ER -
A. M. Savchuk. On the Eigenvalues and Eigenfunctions of the Sturm--Liouville Operator with a Singular Potential. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 277-285. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a10/