Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 163-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the nondegeneracy of a generalized Gram matrix are obtained. In particular, it is shown that the generalized Gram matrix is nondegenerate for the Chebyshev systems of functions. An application of the results to the observability problems for linear nonsteady systems of ordinary differential equations are given. In terms of the observability matrix, necessary and sufficient conditions of the complete and total observability by means of finite-parameter solving operations are established.
@article{MZM_2001_69_2_a0,
     author = {A. I. Astrovskii},
     title = {Generalized {Gram} {Matrix} and {Its} {Application} to the {Observability} {Problem} for {Linear} {Nonsteady} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/}
}
TY  - JOUR
AU  - A. I. Astrovskii
TI  - Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 163
EP  - 170
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/
LA  - ru
ID  - MZM_2001_69_2_a0
ER  - 
%0 Journal Article
%A A. I. Astrovskii
%T Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
%J Matematičeskie zametki
%D 2001
%P 163-170
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/
%G ru
%F MZM_2001_69_2_a0
A. I. Astrovskii. Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/