Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the nondegeneracy of a generalized Gram matrix are obtained. In particular, it is shown that the generalized Gram matrix is nondegenerate for the Chebyshev systems of functions. An application of the results to the observability problems for linear nonsteady systems of ordinary differential equations are given. In terms of the observability matrix, necessary and sufficient conditions of the complete and total observability by means of finite-parameter solving operations are established.
@article{MZM_2001_69_2_a0,
     author = {A. I. Astrovskii},
     title = {Generalized {Gram} {Matrix} and {Its} {Application} to the {Observability} {Problem} for {Linear} {Nonsteady} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/}
}
TY  - JOUR
AU  - A. I. Astrovskii
TI  - Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
JO  - Matematičeskie zametki
PY  - 2001
SP  - 163
EP  - 170
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/
LA  - ru
ID  - MZM_2001_69_2_a0
ER  - 
%0 Journal Article
%A A. I. Astrovskii
%T Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems
%J Matematičeskie zametki
%D 2001
%P 163-170
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/
%G ru
%F MZM_2001_69_2_a0
A. I. Astrovskii. Generalized Gram Matrix and Its Application to the Observability Problem for Linear Nonsteady Systems. Matematičeskie zametki, Tome 69 (2001) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2001_69_2_a0/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | Zbl

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[3] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971

[4] Trokh I., “Zamechaniya o $n$-nablyudaemosti i $n$-upravlyaemosti”, Mekhanika. Sb. perevodov inostr. statei, 146:4 (1974), 255–264 | MR

[5] Shklyar B. Sh., “Ob upravlyaemosti v klassakh prosteishikh funktsii”, Vestn. BGU. Ser. 1, 1972, no. 1, 91–93

[6] Ignatenko V. V., “Upravlyaemost dinamicheskikh sistem s pomoschyu regulyatora”, Vestn. BGU. Ser. 1, 1976, no. 2, 56–58 | MR

[7] Astrovskii A. I., Nablyudaemost nestatsionarnykh lineinykh sistem, Preprint IM AN Belarusi, No 8 (40), 1978

[8] Astrovskii A. I., “Nablyudaemost mnogosvyaznykh sistem s posledeistviem s pomoschyu funktsii Chebysheva”, Issledovaniya po teorii mnogosvyazn. sistem, Nauka, M., 1982, 42–46

[9] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973

[10] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976

[11] Tonkov E. L., “Neostsillyatsiya i chislo pereklyuchenii v lineinoi nestatsionarnoi sisteme, optimalnoi po bystrodeistviyu”, Differents. uravneniya, 9:12 (1973), 2180–2185 | MR | Zbl

[12] Bernshtein S. N., Ekstremalnye svoistva polinomov, ONTI, L.–M., 1937

[13] Vallée-Poussin C., “Sur l'équation differentielle lineaire du second ordre”, J. Math. Pure Appl. (9), 8 (1928), 125–144

[14] Sprindzhuk V. G., “Metod trigonometricheskikh summ v metricheskoi teorii diofantovykh priblizhenii zavisimykh velichin”, Tr. MIAN, 128, Nauka, M., 1972, 212–228 | MR

[15] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[16] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | Zbl

[17] Astrovskii A. I., Mulyarchik V. V., “O nablyudaemosti v spetsialnykh klassakh funktsii”, Problemy optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1981, 157–175 | MR

[18] Silverman L. M., Meadows H. E., “Controllability and observability in time-variable linear systems”, SIAM J. Contr., 5:1 (1967), 64–73 | DOI | MR | Zbl

[19] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Autom. Contr., 10:5 (1965), 112–113 | DOI

[20] Gaishun I. V., Astrovskii A. I., “Opisanie mnozhestva ravnomerno nablyudaemykh lineinykh nestatsionarnykh sistem”, Dokl. AN Belarusi, 40:5 (1996), 5–8 | MR

[21] Weiss L., “The concepts of differential controllability and differential observability”, J. Math. Anal. Appl., 1965, no. 10, 442–449 | DOI | MR