On the Univalence of an Integral on Subclasses of Meromorphic Functions
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 92-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the integral operator $P_\lambda[f](\zeta)=\int_{\zeta_0}^\zeta\bigl(f'(t)\bigr)^\lambda dt$, $|\zeta|>1$, acting on the class $\Sigma$ of functions meromorphic and univalent in the exterior of the unit disk. We refine the ranges of the parameter $\lambda$ for which the operator preserves univalence either on $\Sigma$ or on its subclasses consisting of convex functions. As a consequence, a two-sided estimate is deduced for the separating constant in the sufficient condition for the univalent solvability of exterior inverse boundary-value problems.
@article{MZM_2001_69_1_a7,
     author = {I. R. Nezhmetdinov},
     title = {On the {Univalence} of an {Integral} on {Subclasses} of {Meromorphic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a7/}
}
TY  - JOUR
AU  - I. R. Nezhmetdinov
TI  - On the Univalence of an Integral on Subclasses of Meromorphic Functions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 92
EP  - 99
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a7/
LA  - ru
ID  - MZM_2001_69_1_a7
ER  - 
%0 Journal Article
%A I. R. Nezhmetdinov
%T On the Univalence of an Integral on Subclasses of Meromorphic Functions
%J Matematičeskie zametki
%D 2001
%P 92-99
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a7/
%G ru
%F MZM_2001_69_1_a7
I. R. Nezhmetdinov. On the Univalence of an Integral on Subclasses of Meromorphic Functions. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 92-99. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a7/