Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the asymptotic stability of a two-dimensional stationary solution with internal transition layer to a singularly perturbed parabolic problem. We also construct a set of functions belonging to the domain of attraction of such a solution.
@article{MZM_2001_69_1_a6,
     author = {I. V. Nedelko},
     title = {Asymptotic {Stability,} {Local} {Uniqueness,} and {Domain} of {Attraction} of {Two-Dimensional} {Step} {Type} {Contrast} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/}
}
TY  - JOUR
AU  - I. V. Nedelko
TI  - Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
JO  - Matematičeskie zametki
PY  - 2001
SP  - 82
EP  - 91
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/
LA  - ru
ID  - MZM_2001_69_1_a6
ER  - 
%0 Journal Article
%A I. V. Nedelko
%T Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
%J Matematičeskie zametki
%D 2001
%P 82-91
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/
%G ru
%F MZM_2001_69_1_a6
I. V. Nedelko. Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/

[1] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1132–1139

[2] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | Zbl

[3] Vasileva A. B., “Ob ustoichivosti kontrastnykh struktur”, Matem. modelirovanie, 3:4 (1991), 114–123 | MR

[4] Angenent S., Mallet-Paret J., Peletier L., “Stable transition layers in a semilinear boundary value problems”, J. Differential Equations, 67:2 (1987), 212–242 | DOI | MR | Zbl

[5] Vasileva A. B., Butuzova M. V., “Ob ustoichivosti statsionarnykh reshenii s pogranichnymi i vnutrennimi sloyami”, Matematicheskie metody i ikh prilozheniya, Trudy tretikh matematicheskikh chtenii MGSU (24–29 yanvarya 1995 g.), MGSU, M., 1995, 81–86

[6] Hale J. K., Sakamoto K., “Existence and stability of transition layers”, Japan J. of Appl. Math., 5:3 (1988), 367–405 | MR | Zbl

[7] Fife P. C., Hsiao L., “The generation and propagation of internal layers”, Nonlinear Anal., 12:1 (1988), 19–41 | DOI | MR | Zbl

[8] Amann H., “Periodic solutions of semilinear parabolic equations”, Nonlinear analysis, Collections of Papers in Honor of Eric Rothe, Academic Press, New York, 1978, 1–29 | MR

[9] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | Zbl

[10] Amann H., “Existence and stability of solutions for semilinear parabolic systems and applications to some diffusion reaction equations”, Proc. Roy. Soc. Edinburgh, 81:1 (1978), 35–47 | MR | Zbl

[11] Amann H., “Invariant sets and existence theorems for semilinear parabolic and elliptic systems”, J. Math. Anal. Appl., 65:2 (1978), 432–467 | DOI | MR | Zbl