Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the asymptotic stability of a two-dimensional stationary solution with internal transition layer to a singularly perturbed parabolic problem. We also construct a set of functions belonging to the domain of attraction of such a solution.
@article{MZM_2001_69_1_a6,
author = {I. V. Nedelko},
title = {Asymptotic {Stability,} {Local} {Uniqueness,} and {Domain} of {Attraction} of {Two-Dimensional} {Step} {Type} {Contrast} {Structures}},
journal = {Matemati\v{c}eskie zametki},
pages = {82--91},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/}
}
TY - JOUR AU - I. V. Nedelko TI - Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures JO - Matematičeskie zametki PY - 2001 SP - 82 EP - 91 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/ LA - ru ID - MZM_2001_69_1_a6 ER -
I. V. Nedelko. Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/