Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the asymptotic stability of a two-dimensional stationary solution with internal transition layer to a singularly perturbed parabolic problem. We also construct a set of functions belonging to the domain of attraction of such a solution.
@article{MZM_2001_69_1_a6,
     author = {I. V. Nedelko},
     title = {Asymptotic {Stability,} {Local} {Uniqueness,} and {Domain} of {Attraction} of {Two-Dimensional} {Step} {Type} {Contrast} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/}
}
TY  - JOUR
AU  - I. V. Nedelko
TI  - Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
JO  - Matematičeskie zametki
PY  - 2001
SP  - 82
EP  - 91
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/
LA  - ru
ID  - MZM_2001_69_1_a6
ER  - 
%0 Journal Article
%A I. V. Nedelko
%T Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures
%J Matematičeskie zametki
%D 2001
%P 82-91
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/
%G ru
%F MZM_2001_69_1_a6
I. V. Nedelko. Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 82-91. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a6/