Splitting Obstruction Groups in Codimension~2
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 52-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The splitting obstruction groups depend functorially on the square of fundamental groups. In the paper the problem of splitting along a submanifold of codimension two under some restrictions on the square of fundamental groups is considered. New exact sequences and commutative diagrams containing Wall groups, splitting obstruction groups, and surgery obstruction groups for manifold pairs are obtained. Examples of computation of splitting obstruction groups and natural maps are considered.
@article{MZM_2001_69_1_a4,
     author = {I. Maleshich and Yu. V. Muranov and D. Repov\v{s}},
     title = {Splitting {Obstruction} {Groups} in {Codimension~2}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {52--73},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/}
}
TY  - JOUR
AU  - I. Maleshich
AU  - Yu. V. Muranov
AU  - D. Repovš
TI  - Splitting Obstruction Groups in Codimension~2
JO  - Matematičeskie zametki
PY  - 2001
SP  - 52
EP  - 73
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/
LA  - ru
ID  - MZM_2001_69_1_a4
ER  - 
%0 Journal Article
%A I. Maleshich
%A Yu. V. Muranov
%A D. Repovš
%T Splitting Obstruction Groups in Codimension~2
%J Matematičeskie zametki
%D 2001
%P 52-73
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/
%G ru
%F MZM_2001_69_1_a4
I. Maleshich; Yu. V. Muranov; D. Repovš. Splitting Obstruction Groups in Codimension~2. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 52-73. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/

[1] Wall C. T. C., Surgery on Compact Manifolds, Academic Press, London, 1970

[2] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Matem. Notes, 26, Princeton Univ. Press, Princeton, N.J., 1981 | MR | Zbl

[3] Ranicki A. A., Algebraic $L$-Theory and Topological Manifolds, Cambridge Univ. Press, Cambridge, 1992

[4] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl

[5] Akhmetev P. M., Muranov Yu. V., “Prepyatstviya k rasschepleniyu mnogoobrazii s beskonechnoi fundamentalnoi gruppoi”, Matem. zametki, 60:2 (1996), 163–175 | MR | Zbl

[6] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl

[7] Ranicki A. A., High-Dimensional Knot Theory, Springer, Berlin–Heidelberg, 1998 | Zbl

[8] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl

[9] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42 (1987), 55–85 | MR | Zbl

[10] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14

[11] Wall C. T. C., “Foundations of algebraic $L$-theory”, Lecture Notes in Math., 343, 1973, 266–300 | MR | Zbl

[12] Wall C. T. C., “On the classification of hermitian forms. VI: Group Rings”, Ann. of Math., 103 (1976), 1–80 | DOI | MR | Zbl

[13] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure and Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[14] Akhmetev P. M., “Rasschepleniya gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti 1”, Izv. AN SSSR. Ser. matem., 51 (1987), 211–241 | Zbl

[15] Muranov Yu. V., Khemblton I., “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190:10 (1999), 65–86 | MR | Zbl

[16] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl

[17] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181 (1990), 1061–1098 | Zbl

[18] Muranov Yu. V., Repovsh D., “Perestroiki zamknutykh mnogoobrazii s diedralnoi fundamentalnoi gruppoi”, Matem. zametki, 64:2 (1998), 238–250 | MR | Zbl

[19] Milnor J. W., “A procedure for killing the homotopy groups of differentiable manifolds”, Symposia in Pure Math. AMS, 3, 1961, 39–55 | MR | Zbl

[20] Cavicchioli A., Muranov Y. V., Repovš D., “Spectral sequences in $K$-theory for a twisted quadratic extension”, Yokohama Math. J., 46 (1998), 1–13 | MR | Zbl