Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_1_a4, author = {I. Maleshich and Yu. V. Muranov and D. Repov\v{s}}, title = {Splitting {Obstruction} {Groups} in {Codimension~2}}, journal = {Matemati\v{c}eskie zametki}, pages = {52--73}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/} }
I. Maleshich; Yu. V. Muranov; D. Repovš. Splitting Obstruction Groups in Codimension~2. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 52-73. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a4/
[1] Wall C. T. C., Surgery on Compact Manifolds, Academic Press, London, 1970
[2] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Matem. Notes, 26, Princeton Univ. Press, Princeton, N.J., 1981 | MR | Zbl
[3] Ranicki A. A., Algebraic $L$-Theory and Topological Manifolds, Cambridge Univ. Press, Cambridge, 1992
[4] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl
[5] Akhmetev P. M., Muranov Yu. V., “Prepyatstviya k rasschepleniyu mnogoobrazii s beskonechnoi fundamentalnoi gruppoi”, Matem. zametki, 60:2 (1996), 163–175 | MR | Zbl
[6] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl
[7] Ranicki A. A., High-Dimensional Knot Theory, Springer, Berlin–Heidelberg, 1998 | Zbl
[8] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl
[9] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42 (1987), 55–85 | MR | Zbl
[10] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14
[11] Wall C. T. C., “Foundations of algebraic $L$-theory”, Lecture Notes in Math., 343, 1973, 266–300 | MR | Zbl
[12] Wall C. T. C., “On the classification of hermitian forms. VI: Group Rings”, Ann. of Math., 103 (1976), 1–80 | DOI | MR | Zbl
[13] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure and Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl
[14] Akhmetev P. M., “Rasschepleniya gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti 1”, Izv. AN SSSR. Ser. matem., 51 (1987), 211–241 | Zbl
[15] Muranov Yu. V., Khemblton I., “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190:10 (1999), 65–86 | MR | Zbl
[16] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl
[17] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181 (1990), 1061–1098 | Zbl
[18] Muranov Yu. V., Repovsh D., “Perestroiki zamknutykh mnogoobrazii s diedralnoi fundamentalnoi gruppoi”, Matem. zametki, 64:2 (1998), 238–250 | MR | Zbl
[19] Milnor J. W., “A procedure for killing the homotopy groups of differentiable manifolds”, Symposia in Pure Math. AMS, 3, 1961, 39–55 | MR | Zbl
[20] Cavicchioli A., Muranov Y. V., Repovš D., “Spectral sequences in $K$-theory for a twisted quadratic extension”, Yokohama Math. J., 46 (1998), 1–13 | MR | Zbl