On the Geometry of Lagrangian Submanifolds
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 36-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a Lagrangian submanifold passes through each point of a symplectic manifold in the direction of arbitrary Lagrangian plane at this point. Generally speaking, such a Lagrangian submanifold is not unique; nevertheless, the set of all such submanifolds in Hermitian extension of a symplectic manifold of dimension greater than 4 for arbitrary initial data contains a totally geodesic submanifold (which we call the $s$-Lagrangian submanifold) if this symplectic manifold is a complex space form. We show that each Lagrangian submanifold in a complex space form of holomorphic sectional curvature equal to $c$ is a space of constant curvature $c/4$. We apply these results to the geometry of principal toroidal bundles.
@article{MZM_2001_69_1_a3,
     author = {V. F. Kirichenko},
     title = {On the {Geometry} of {Lagrangian} {Submanifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--51},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - On the Geometry of Lagrangian Submanifolds
JO  - Matematičeskie zametki
PY  - 2001
SP  - 36
EP  - 51
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/
LA  - ru
ID  - MZM_2001_69_1_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T On the Geometry of Lagrangian Submanifolds
%J Matematičeskie zametki
%D 2001
%P 36-51
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/
%G ru
%F MZM_2001_69_1_a3
V. F. Kirichenko. On the Geometry of Lagrangian Submanifolds. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | Zbl

[2] Fomenko A. T., Symplectic Geometry, 2nd ed., Adv. Stud. Contemp. Math., 5, Gordon and Breach Publishers, Amsterdam, 1995 | MR

[3] Arnold V. I., Matematicheskie osnovy klassicheskoi mekhaniki, Nauka, M., 1989

[4] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundament. napravleniya, 4, VINITI, M., 1985, 7–139

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986

[6] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[7] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, IL, M., 1960

[8] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[9] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure Appl., 123:4 (1980), 35–58 | DOI | Zbl

[10] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–71 | MR

[11] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geometriae Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[12] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, I”, Geometriae Dedicata, 51 (1994), 75–104 | DOI | MR | Zbl

[13] Ishihara I., “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2 (1979), 171–186 | DOI | MR | Zbl

[14] Kobayashi S., “Principal fibre bundle with the $1$-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl