Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_69_1_a3, author = {V. F. Kirichenko}, title = {On the {Geometry} of {Lagrangian} {Submanifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {36--51}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/} }
V. F. Kirichenko. On the Geometry of Lagrangian Submanifolds. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a3/
[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | Zbl
[2] Fomenko A. T., Symplectic Geometry, 2nd ed., Adv. Stud. Contemp. Math., 5, Gordon and Breach Publishers, Amsterdam, 1995 | MR
[3] Arnold V. I., Matematicheskie osnovy klassicheskoi mekhaniki, Nauka, M., 1989
[4] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundament. napravleniya, 4, VINITI, M., 1985, 7–139
[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986
[6] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl
[7] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, IL, M., 1960
[8] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981
[9] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure Appl., 123:4 (1980), 35–58 | DOI | Zbl
[10] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–71 | MR
[11] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geometriae Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl
[12] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, I”, Geometriae Dedicata, 51 (1994), 75–104 | DOI | MR | Zbl
[13] Ishihara I., “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2 (1979), 171–186 | DOI | MR | Zbl
[14] Kobayashi S., “Principal fibre bundle with the $1$-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl