On $p$-Reducibility of Computable Numerations
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 31-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\nu_1$ and $\nu_2$ are two computable numerations of a certain family of recursively enumerable sets such that $\nu_2$ and $\nu_1$ is not a $p$-principal numeration, then there exists a computable numeration $\nu_0$ p-incomparable with $\nu_1$ such that $\nu_2$. This yields the description of injective objects and the absence of numerated sets projective in the category $K_p$ conforming to $p$-reducibility of computable numeration.
@article{MZM_2001_69_1_a2,
     author = {A. N. Degtev},
     title = {On $p${-Reducibility} of {Computable} {Numerations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--35},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a2/}
}
TY  - JOUR
AU  - A. N. Degtev
TI  - On $p$-Reducibility of Computable Numerations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 31
EP  - 35
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a2/
LA  - ru
ID  - MZM_2001_69_1_a2
ER  - 
%0 Journal Article
%A A. N. Degtev
%T On $p$-Reducibility of Computable Numerations
%J Matematičeskie zametki
%D 2001
%P 31-35
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a2/
%G ru
%F MZM_2001_69_1_a2
A. N. Degtev. On $p$-Reducibility of Computable Numerations. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 31-35. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a2/

[1] Degtev A. N., “O svodimosti numeratsii”, Matem. sb., 112:2 (1980), 207–219 | MR | Zbl

[2] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977

[3] Degtev A. N., “On $p$-reducibility of numerations”, Ann. of Pure and Appl. Logic, 63 (1993), 57–60 | DOI | MR | Zbl

[4] Marchenkov S. S., “O vychislimykh numeratsiyakh semeistv obscherekursivnykh funktsii”, Algebra i logika, 11:5 (1972), 588–607 | MR | Zbl