On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 144-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work a finite $\Pi$-separable complex irreducible linear group $G$ is studied. The conditions for its $S_\Pi$-subgroup to be normal in $G$ and Abelian are determined. The results provide a solution to the well-known Isaacs problem in some particular cases.
@article{MZM_2001_69_1_a12,
     author = {A. A. Yadchenko and A. V. Romanovskii},
     title = {On the {Isaacs} {Problem} {Concerning} {Finite} $p${-Solvable} {Linear} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {144--152},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/}
}
TY  - JOUR
AU  - A. A. Yadchenko
AU  - A. V. Romanovskii
TI  - On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 144
EP  - 152
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/
LA  - ru
ID  - MZM_2001_69_1_a12
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%A A. V. Romanovskii
%T On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups
%J Matematičeskie zametki
%D 2001
%P 144-152
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/
%G ru
%F MZM_2001_69_1_a12
A. A. Yadchenko; A. V. Romanovskii. On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/

[1] Ito N., “On the theorem of N. F. Blichfeldt”, Nagoya Math. J., 15 (1953), 75–77

[2] Winter D. L., “On finite solvable linear groups”, Ill. J. Math., 15:3 (1971), 425–428 | MR | Zbl

[3] Winter D. L., “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | MR | Zbl

[4] Winter D. L., “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl

[5] Isaacs I. M., “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl

[6] Isaacs I. M., “The Santa Cruz conference on finite groups”, Proc. Symp. Pure Math., 37 (1980), 377–384 | MR | Zbl

[7] Romanovskii A. V., Yadchenko A. A., “O silovskikh podgruppakh lineinykh grupp”, Matem. sb., 137 (179):4 (12) (1988), 568–573 | Zbl

[8] Romanovskii A. V., Yadchenko A. A., “Monomialnye kharaktery i normalnye podgruppy konechnykh grupp”, Ukr. matem. zh., 43:78 (1991), 991–996 | MR | Zbl

[9] Gorenstein D., Finite Groups, Harper and Row, New York, 1968 | Zbl

[10] Isaacs I. M., Character Theory of Finite Groups, Acad. Press, New York, 1976 | Zbl