On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 144-152
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work a finite $\Pi$-separable complex irreducible linear group $G$ is studied. The conditions for its $S_\Pi$-subgroup to be normal in $G$ and Abelian are determined. The results provide a solution to the well-known Isaacs problem in some particular cases.
@article{MZM_2001_69_1_a12,
author = {A. A. Yadchenko and A. V. Romanovskii},
title = {On the {Isaacs} {Problem} {Concerning} {Finite} $p${-Solvable} {Linear} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {144--152},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/}
}
TY - JOUR AU - A. A. Yadchenko AU - A. V. Romanovskii TI - On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups JO - Matematičeskie zametki PY - 2001 SP - 144 EP - 152 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/ LA - ru ID - MZM_2001_69_1_a12 ER -
A. A. Yadchenko; A. V. Romanovskii. On the Isaacs Problem Concerning Finite $p$-Solvable Linear Groups. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a12/