Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 133-143
Voir la notice de l'article provenant de la source Math-Net.Ru
The author presents a revised and detailed version of his theorem on the existence of Feller's extensions of Markov chains; to this end the broader notion of quasi-Feller extension is used. The existence of Markov chains dual to the chains with Borel space of states is derived from this result. Chains irreducible in the Orey sense are studied in most detail. For example, we prove that for such chains the quasi-Feller extension can be chosen recurrent or Liouville if the original chains possess these properties.
@article{MZM_2001_69_1_a11,
author = {M. G. Shur},
title = {Quasi-Feller {Extensions} of {Markov} {Chains} and {Existence} of {Dual} {Chains}},
journal = {Matemati\v{c}eskie zametki},
pages = {133--143},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/}
}
M. G. Shur. Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/