Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 133-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author presents a revised and detailed version of his theorem on the existence of Feller's extensions of Markov chains; to this end the broader notion of quasi-Feller extension is used. The existence of Markov chains dual to the chains with Borel space of states is derived from this result. Chains irreducible in the Orey sense are studied in most detail. For example, we prove that for such chains the quasi-Feller extension can be chosen recurrent or Liouville if the original chains possess these properties.
@article{MZM_2001_69_1_a11,
     author = {M. G. Shur},
     title = {Quasi-Feller {Extensions} of {Markov} {Chains} and {Existence} of {Dual} {Chains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains
JO  - Matematičeskie zametki
PY  - 2001
SP  - 133
EP  - 143
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/
LA  - ru
ID  - MZM_2001_69_1_a11
ER  - 
%0 Journal Article
%A M. G. Shur
%T Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains
%J Matematičeskie zametki
%D 2001
%P 133-143
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/
%G ru
%F MZM_2001_69_1_a11
M. G. Shur. Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a11/

[1] Shur M. G., “Invariantnye mery dlya tsepei Markova i fellerovskie rasshireniya tsepei”, Teoriya veroyatn. i ee primeneniya, 26:3 (1981), 496–509 | MR | Zbl

[2] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989

[3] Orey S., Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971 | Zbl

[4] Zhdanok A. I., Asimptoticheskoe povedenie tsepei Markova i invariantnye konechno-additivnye mery, Diss. ... k. f.-m. n., Latv. gos. un-t, Riga, 1981

[5] Knight F., “Note on regularization of Markov processes”, Illinois J. Math., 9:3 (1965), 548–552 | MR | Zbl

[6] Lyumis L., Vvedenie v abstraktnyi garmonicheskii analiz, IL, M., 1956

[7] Dellacherie C., Meyer P. A., Probabilités et potential, chapitres I–IV, Hermann, Paris, 1975 | Zbl

[8] Khalmosh P., Teoriya mery, IL, M., 1953

[9] Kemeni Dzh., Snell Dzh., Knepp A., Schetnye tsepi Markova, Nauka, M., 1987

[10] Revyuz D., Tsepi Markova, RFFI, M., 1997

[11] Kuratovskii K., Topologiya., T. 1, Mir, M., 1966