Vekua Integral Operators on Riemann Surfaces
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 18-30

Voir la notice de l'article provenant de la source Math-Net.Ru

On an arbitrary (in general, noncompact) Riemann surface $R$, we study integral operators $\operatorname{T}$ and $\Pi$ analogous to the operators introduced by Vekua in his theory of generalized analytic functions. By way of application, we obtain necessary and sufficient conditions for the solvability of the nonhomogeneous Cauchy–Riemann equation $\overline\partial f=F$ in the class of functions $f$ exhibiting $\Lambda_0$-behavior in the vicinity of the ideal boundary of $R$.
@article{MZM_2001_69_1_a1,
     author = {I. A. Bikchantaev},
     title = {Vekua {Integral} {Operators} on {Riemann} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a1/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - Vekua Integral Operators on Riemann Surfaces
JO  - Matematičeskie zametki
PY  - 2001
SP  - 18
EP  - 30
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a1/
LA  - ru
ID  - MZM_2001_69_1_a1
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T Vekua Integral Operators on Riemann Surfaces
%J Matematičeskie zametki
%D 2001
%P 18-30
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a1/
%G ru
%F MZM_2001_69_1_a1
I. A. Bikchantaev. Vekua Integral Operators on Riemann Surfaces. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a1/