Bifurcation of Invariant Tori of Codimension One
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 3-17
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a method for constructing classes of real systems of differential equations of order $2^d$ ($d\ge1$), including polynomial systems, in which for all sufficiently small positive values of the parameter a bifurcation from the point of equilibrium to invariant tori of dimension $2^d-1$ occurs.
@article{MZM_2001_69_1_a0,
author = {V. V. Basov},
title = {Bifurcation of {Invariant} {Tori} of {Codimension} {One}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--17},
year = {2001},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/}
}
V. V. Basov. Bifurcation of Invariant Tori of Codimension One. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/
[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Leningradskii un-t, L., 1991
[2] Hale J. K., “Integral manifolds of perturbed differential systems”, Ann. of Math., 73:3 (1961), 496–531 | DOI | MR | Zbl
[3] Maffei C., Negrini P., Scalla M., “Bifurcation from 2-dimensional to $3$-dimensional invariant tori”, Ann. di Matematica pura ed applicata (IV), CLV (1989), 117–136 | DOI | MR