Bifurcation of Invariant Tori of Codimension One
Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for constructing classes of real systems of differential equations of order $2^d$ ($d\ge1$), including polynomial systems, in which for all sufficiently small positive values of the parameter a bifurcation from the point of equilibrium to invariant tori of dimension $2^d-1$ occurs.
@article{MZM_2001_69_1_a0,
     author = {V. V. Basov},
     title = {Bifurcation of {Invariant} {Tori} of {Codimension} {One}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/}
}
TY  - JOUR
AU  - V. V. Basov
TI  - Bifurcation of Invariant Tori of Codimension One
JO  - Matematičeskie zametki
PY  - 2001
SP  - 3
EP  - 17
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/
LA  - ru
ID  - MZM_2001_69_1_a0
ER  - 
%0 Journal Article
%A V. V. Basov
%T Bifurcation of Invariant Tori of Codimension One
%J Matematičeskie zametki
%D 2001
%P 3-17
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/
%G ru
%F MZM_2001_69_1_a0
V. V. Basov. Bifurcation of Invariant Tori of Codimension One. Matematičeskie zametki, Tome 69 (2001) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2001_69_1_a0/

[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Leningradskii un-t, L., 1991

[2] Hale J. K., “Integral manifolds of perturbed differential systems”, Ann. of Math., 73:3 (1961), 496–531 | DOI | MR | Zbl

[3] Maffei C., Negrini P., Scalla M., “Bifurcation from 2-dimensional to $3$-dimensional invariant tori”, Ann. di Matematica pura ed applicata (IV), CLV (1989), 117–136 | DOI | MR