On Rearrangements of the Haar System in $L_p$
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 870-873.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study operators rearranging the Haar system in each bundle. It is proved that the norm of any nonidentical rearrangement admits a nontrivial lower bound in $L_p$ spaces, $p\ne2$.
@article{MZM_2000_68_6_a7,
     author = {D. Z. Marshan},
     title = {On {Rearrangements} of the {Haar} {System} in $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--873},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/}
}
TY  - JOUR
AU  - D. Z. Marshan
TI  - On Rearrangements of the Haar System in $L_p$
JO  - Matematičeskie zametki
PY  - 2000
SP  - 870
EP  - 873
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/
LA  - ru
ID  - MZM_2000_68_6_a7
ER  - 
%0 Journal Article
%A D. Z. Marshan
%T On Rearrangements of the Haar System in $L_p$
%J Matematičeskie zametki
%D 2000
%P 870-873
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/
%G ru
%F MZM_2000_68_6_a7
D. Z. Marshan. On Rearrangements of the Haar System in $L_p$. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 870-873. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/

[1] Otyrba D. Z., “O perestanovkakh v prostranstvakh $L^p$”, Vestn. MGU. Ser. 1. Matem., mekh., 1994, no. 5, 67–69 | MR | Zbl

[2] Schipp F., “On equivalence of rearrangements of the Haar system in dyadic Hardy and BMO spaces”, Ann. of Math., 16:2 (1990), 135–141 | DOI | MR | Zbl

[3] Semenov E. M., Shtekert B., “Perestanovki sistemy Khaara v prostranstvakh $L^p$”, Analysis Mathematica, 7:4 (1981), 277–295 | DOI | MR