On Rearrangements of the Haar System in $L_p$
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 870-873
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study operators rearranging the Haar system in each bundle. It is proved that the norm of any nonidentical rearrangement admits a nontrivial lower bound in $L_p$ spaces, $p\ne2$.
@article{MZM_2000_68_6_a7,
author = {D. Z. Marshan},
title = {On {Rearrangements} of the {Haar} {System} in $L_p$},
journal = {Matemati\v{c}eskie zametki},
pages = {870--873},
year = {2000},
volume = {68},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/}
}
D. Z. Marshan. On Rearrangements of the Haar System in $L_p$. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 870-873. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a7/
[1] Otyrba D. Z., “O perestanovkakh v prostranstvakh $L^p$”, Vestn. MGU. Ser. 1. Matem., mekh., 1994, no. 5, 67–69 | MR | Zbl
[2] Schipp F., “On equivalence of rearrangements of the Haar system in dyadic Hardy and BMO spaces”, Ann. of Math., 16:2 (1990), 135–141 | DOI | MR | Zbl
[3] Semenov E. M., Shtekert B., “Perestanovki sistemy Khaara v prostranstvakh $L^p$”, Analysis Mathematica, 7:4 (1981), 277–295 | DOI | MR