On the Phase Portrait of a Harmonic Oscillator with Friction Perturbed by a Random Process of White Noise Type
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 862-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the phase portrait of a harmonic oscillator with friction for the case in which random perturbations of white noise type expressed in the Ito form act at a certain angle to the phase velocity vector.
@article{MZM_2000_68_6_a6,
     author = {G. L. Kulinich and Yu. V. Berhackaya},
     title = {On the {Phase} {Portrait} of a {Harmonic} {Oscillator} with {Friction} {Perturbed} by a {Random} {Process} of {White} {Noise} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {862--869},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a6/}
}
TY  - JOUR
AU  - G. L. Kulinich
AU  - Yu. V. Berhackaya
TI  - On the Phase Portrait of a Harmonic Oscillator with Friction Perturbed by a Random Process of White Noise Type
JO  - Matematičeskie zametki
PY  - 2000
SP  - 862
EP  - 869
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a6/
LA  - ru
ID  - MZM_2000_68_6_a6
ER  - 
%0 Journal Article
%A G. L. Kulinich
%A Yu. V. Berhackaya
%T On the Phase Portrait of a Harmonic Oscillator with Friction Perturbed by a Random Process of White Noise Type
%J Matematičeskie zametki
%D 2000
%P 862-869
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a6/
%G ru
%F MZM_2000_68_6_a6
G. L. Kulinich; Yu. V. Berhackaya. On the Phase Portrait of a Harmonic Oscillator with Friction Perturbed by a Random Process of White Noise Type. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 862-869. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a6/

[1] Andronov A. A., Vit A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981 | Zbl

[2] Kulinich G. L., “Yakisnii analiz vplivu na garmonichnii ostsilyator z tertyam vipadkovikh zburen tipu “bilogo shumu” vzdovzh vektora fazovoi shvidkosti”, Ukr. matem. zh., 49:1 (1997), 36–47 | MR

[3] Kulinich G. L., “Qualitative analysis of the influence of random perturbations on the phase velocity of the harmonic oscillator”, Random Oper. and Stoch. Equation, 3:2 (1995), 141–152 | MR | Zbl

[4] Skorokhod A. V., Asimptoticheskie metody teorii stokhasticheskikh differentsialnykh uravnenii, Naukova dumka, Kiev, 1987 | Zbl

[5] Gikhman I. I., Skorokhod A. I., Teoriya sluchainykh protsessov, T. III, Nauka, M., 1975

[6] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969

[7] Stratonovich R. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike, Sovetskoe radio, M., 1961 | Zbl

[8] Kulinich G. L., “On the limiting behaviour of a harmonic oscillator with random external disturbance”, J. Amer. Math. Soc., 8:3 (1995), 265–274 | MR | Zbl

[9] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | Zbl

[10] Babchuk V. G., Kulinich G. L., “Reshenie odnogo klassa lineinoi sistemy stokhasticheskikh differentsialnykh uravnenii Ito vtorogo poryadka s odnim vinerovskim protsessom”, Teoriya veroyatn. i ee primen., 23:2 (1978), 457–458