A Method of Deducing $L$-Polyhedra for $n$-Lattices
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 830-841

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method for selecting an $L$-simplex in an $L$-polyhedron of an $n$-lattice in Euclidean space. By taking into account the specific form of the condition that a simplex in the lattice is an $L$-simplex and by considering a simplex selected from an $L$-polyhedron, we present a new method for describing all types of $L$-polyhedra in lattices of given dimension $n$. We apply the method to deduce all types of $L$-polyhedra in $n$-dimensional lattices for $n=2,3,4$, which are already known from previous results.
@article{MZM_2000_68_6_a2,
     author = {E. P. Baranovskii and P. G. Kononenko},
     title = {A {Method} of {Deducing} $L${-Polyhedra} for $n${-Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {830--841},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a2/}
}
TY  - JOUR
AU  - E. P. Baranovskii
AU  - P. G. Kononenko
TI  - A Method of Deducing $L$-Polyhedra for $n$-Lattices
JO  - Matematičeskie zametki
PY  - 2000
SP  - 830
EP  - 841
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a2/
LA  - ru
ID  - MZM_2000_68_6_a2
ER  - 
%0 Journal Article
%A E. P. Baranovskii
%A P. G. Kononenko
%T A Method of Deducing $L$-Polyhedra for $n$-Lattices
%J Matematičeskie zametki
%D 2000
%P 830-841
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a2/
%G ru
%F MZM_2000_68_6_a2
E. P. Baranovskii; P. G. Kononenko. A Method of Deducing $L$-Polyhedra for $n$-Lattices. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 830-841. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a2/