A new representation of the Hamiltonian operator for bosons and fermions. Quantization of free energy and the dependence of the Landau criterion on temperature
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 945-947.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_6_a16,
     author = {V. P. Maslov},
     title = {A new representation of the {Hamiltonian} operator for bosons and fermions. {Quantization} of free energy and the dependence of the {Landau} criterion on temperature},
     journal = {Matemati\v{c}eskie zametki},
     pages = {945--947},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a16/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - A new representation of the Hamiltonian operator for bosons and fermions. Quantization of free energy and the dependence of the Landau criterion on temperature
JO  - Matematičeskie zametki
PY  - 2000
SP  - 945
EP  - 947
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a16/
LA  - ru
ID  - MZM_2000_68_6_a16
ER  - 
%0 Journal Article
%A V. P. Maslov
%T A new representation of the Hamiltonian operator for bosons and fermions. Quantization of free energy and the dependence of the Landau criterion on temperature
%J Matematičeskie zametki
%D 2000
%P 945-947
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a16/
%G ru
%F MZM_2000_68_6_a16
V. P. Maslov. A new representation of the Hamiltonian operator for bosons and fermions. Quantization of free energy and the dependence of the Landau criterion on temperature. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 945-947. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a16/

[1] Maltsev A. I., Matem. sb., 36 (1955), 569–576 | MR | Zbl

[2] Kuzmin E. N., Algebra i logika, 10 (1971), 3–22 | MR | Zbl

[3] Kerdman F. S., Algebra i logika, 18 (1979), 523–555 | MR | Zbl

[4] Loginov E. K., Matem. zametki, 54:6 (1993), 66–73 | MR | Zbl

[5] Eilenberg S., Ann. Soc. Polon. Mat., 21 (1948), 125–134 | MR | Zbl