Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 917-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to constructing an asymptotics of the solution to the Cauchy problem for a linear parabolic equation of second order with variable coefficients containing a small parameter at the highest derivative. Sufficient conditions for the existence and uniqueness of the “multiplicative” asymptotic expansion of the global solution of the problem are given.
@article{MZM_2000_68_6_a12,
     author = {V. M. Khametov},
     title = {Asymptotics of the {Solution} to the {Cauchy} {Problem} for {Linear} {Parabolic} {Equations} of {Second} {Order} with {Small} {Diffusion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {917--934},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a12/}
}
TY  - JOUR
AU  - V. M. Khametov
TI  - Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion
JO  - Matematičeskie zametki
PY  - 2000
SP  - 917
EP  - 934
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a12/
LA  - ru
ID  - MZM_2000_68_6_a12
ER  - 
%0 Journal Article
%A V. M. Khametov
%T Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion
%J Matematičeskie zametki
%D 2000
%P 917-934
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a12/
%G ru
%F MZM_2000_68_6_a12
V. M. Khametov. Asymptotics of the Solution to the Cauchy Problem for Linear Parabolic Equations of Second Order with Small Diffusion. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 917-934. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a12/

[1] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985

[2] Fleming U., Rishel R., Optimalnoe upravlenie determinirovannymi i stokhasticheskimi sistemami, Mir, M., 1978

[3] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977

[4] Baklan V. V., Zuev L. A., “Upravlenie diffuzionnymi protsessami s maloi diffuziei”, Teoriya sluchainykh protsessov, Sb., Naukova dumka, Kiev, 1976, 46–55

[5] Fleming W. H., Wendell H., “Logarithmic transformation with applications in probability and stochastic control”, Lecture Notes in Control and Information Sciences, 121, 1988, 309–311 | MR

[6] Khametov V. M., “$\varepsilon $-optimalnoe upravlenie sluchainymi protsessami diffuzionnogo tipa”, Veroyatnostnye protsessy v diskretnoi matematike, Sb., MIEM, M., 1987, 56–73

[7] Maslov V. P., Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988

[8] Venttsel A. D., Freidlin M. I., Flyuktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | Zbl

[9] Venttsel A. D., Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Nauka, M., 1980 | Zbl

[10] Piterbarg V. I., Fatalov V. R., “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[11] Schilder M., “Some asymptotic formulas for Wiener integrals”, Trans. Amer. Math. Soc., 125 (1966), 63–85 | DOI | MR | Zbl

[12] Dubrovskii V. N., “Tochnye asimptoticheskie formuly laplasovskogo tipa dlya markovskikh protsessov”, Dokl. AN SSSR, 226:5 (1976), 1001–1004 | MR | Zbl

[13] Kifer Yu. I., “Ob asimptotike perekhodnykh veroyatnostnykh protsessov s maloi diffuziei”, Teoriya veroyatn. i ee primen., 21:3 (1976), 527–536 | MR | Zbl

[14] Varadhan S. R. S., “Diffusion processes in a small time interval”, Comm. Pure Appl. Math., 20:4 (1967), 659–685 | DOI | MR | Zbl

[15] Molchanov S. A., “Diffuzionnye protsessy i rimanova geometriya”, UMN, 30:1 (1975), 3–59 | MR | Zbl

[16] Nesepenko G. A., Tyurin Yu. N., “Luchevaya asimptotika funktsii Grina uravneniya teploprovodnosti s malym parametrom”, Matem. sb., 124:3 (1984), 320–334 | MR

[17] Buslaev V. S., “Kontinualnye integraly i asimptotika reshenii pri $t\downarrow 0$. Prilozhenie k difraktsii”, Problemy matematicheskoi fiziki, no. 2, LGU, L., 1967, 85–107 | MR

[18] Danilov V. G., Frolovichev S. M., “Metod otrazheniya dlya konstruirovaniya asimptotiki funktsii Grina dlya parabolicheskikh uravnenii s peremennymi koeffitsientami”, Matem. zametki, 57:3 (1995), 467–420 | MR

[19] Maslov V. P., Chebotarev A. M., “O vtorom chlene logarifmicheskoi asimptotiki funktsionalnykh integralov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 19, VINITI, M., 1982, 127–154

[20] Khametov V. M., “Global asymptotics of the inverse Kolmogorov equation for diffusion processes with small diffusion”, Fifth International Vilnius Conference on Probability Theory and Mathematical Statistics, Abstracts of Communications. V. 1, Vilnius, 1989, 252–253

[21] Khametov V. M., “Asymptotic solution of the inverse Kolmogorov equation for diffusion processes with small diffusion”, Probability Theory and Mathematical Statistics, Proceedings of the Fifth Vilnius Conference. V. 1, Vilnius, 1990, 590–601 | MR

[22] Mazya V. B., Prostranstva Soboleva, LGU, L., 1985

[23] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | Zbl

[24] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986