Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces
Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 819-829

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^2_g$ be a closed orientable surface of genus $g\ge2$, endowed with the structure of a Riemann manifold of constant negative curvature. For the universal covering $\Delta$, there is the notion of absolute, each of whose points determines an asymptotic direction of a bundle of parallel equidirected geodesics. In the paper it is proved that there is a set $U_g$ on the absolute having the cardinality of the continuum and such that if an arbitrary flow on $M^2_g$ has a semitrajectory whose covering has asymptotic direction defined by a point from $U_g$, then this flow is not analytical and has infinitely many stationary points.
@article{MZM_2000_68_6_a1,
     author = {S. Kh. Aranson and E. V. Zhuzhoma},
     title = {Properties of the {Absolute} {That} {Affect} {Smoothness} of {Flows} on {Closed} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {819--829},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a1/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
TI  - Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces
JO  - Matematičeskie zametki
PY  - 2000
SP  - 819
EP  - 829
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a1/
LA  - ru
ID  - MZM_2000_68_6_a1
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%T Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces
%J Matematičeskie zametki
%D 2000
%P 819-829
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a1/
%G ru
%F MZM_2000_68_6_a1
S. Kh. Aranson; E. V. Zhuzhoma. Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 819-829. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a1/