Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_6_a0, author = {L. Accardi and M. Skeide}, title = {Hilbert {Module} {Realization} of the {Square} of {White} {Noise} and {Finite} {Difference} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--818}, publisher = {mathdoc}, volume = {68}, number = {6}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a0/} }
TY - JOUR AU - L. Accardi AU - M. Skeide TI - Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras JO - Matematičeskie zametki PY - 2000 SP - 803 EP - 818 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a0/ LA - ru ID - MZM_2000_68_6_a0 ER -
L. Accardi; M. Skeide. Hilbert Module Realization of the Square of White Noise and Finite Difference Algebras. Matematičeskie zametki, Tome 68 (2000) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/MZM_2000_68_6_a0/
[1] Accardi L., Lu Y. G., Volovich I. V., White Noise Approach to Classical and Quantum Stochastic Calculi, Preprint, Rome, 1999; Lecture notes of the Volterra International School of same title (Trento) (to appear)
[2] Sniady P., Quadratic Bosonic and Free White Noise, Preprint, 1999
[3] Accardi L., Skeide M., Interacting Fock Space Versus Full Fock Module, Preprint, Rome, 1998, Revised in January 2000 | Zbl
[4] Feinsilver P. J., “Discrete analogues of the Heisenberg–Weyl algebra”, Mh. Math., 104 (1987), 89–108 | DOI | MR | Zbl
[5] Boukas A., “Stochastic calculus on the finite-difference Fock space”, Quantum Probability and Related Topics, VI, ed. L. Accardi, World Scientific, 1991 | Zbl
[6] Parthasarathy K. R., Sinha K. B., “Unification of quantum noise processes in Fock spaces”, Quantum Probability and Related Topics, VI, ed. L. Accardi, World Scientific, 1991, 371–384 | MR | Zbl
[7] Skeide M., “Hilbert modules in quantum electrodynamics and quantum probability”, Comm. Math. Phys., 192 (1998), 569–604 | DOI | MR | Zbl
[8] Accardi L., Lu Y. G., “From the weak coupling limit to a new type of quantum stochastic calculus”, Quantum Probability and Related Topics, VII, ed. L. Accardi, World Scientific, 1992, 1–14 | Zbl
[9] Accardi L., Lu Y. G., “The Wigner semi-circle law in quantum electrodynamics”, Comm. Math. Phys., 180 (1996), 605–632 | DOI | MR | Zbl
[10] Pimsner M. V., “A class of $C^*$-algebras generalizing both Cuntz–Krieger algebras and crossed products by $\mathbb Z$”, Free Probability Theory, 12, ed. D. V. Voiculescu, Fields Institute Communications, 1997, 189–212 | MR | Zbl
[11] Speicher R., Combinatorial Theory of the Free Product with Amalgamation and Operator-valued Free Probability Theory, Mem. Amer. Math. Soc., 627, Amer. Math. Soc., Providence, R.I., 1998
[12] Accardi L., Lu Y. G., Volovich I. V., Interacting Fock Spaces and Hilbert Module Extensions of the Heisenberg Commutation Relations, IIAS Publications, Kyoto, 1997
[13] Bhat B. V. R., Skeide M., Tensor Product Systems of Hilbert Modules and Dilations of Completely Positive Semigroups, Preprint, Cottbus, Revised version, Rome, Submitted to Infinite-Dimensional Analysis, Quantum Probability and Related Topics, 1999
[14] Arveson W., Continuous Analogues of Fock Space, Mem. Amer. Math. Soc., 409, Amer. Math. Soc., Providence, R.I., 1989
[15] Boukas A., Quantum Stochastic Analysis: a Non-Brownian Case, Ph. D. thesis, Southern Illinois University, 1988
[16] Boukas A., “An example of quantum exponential process”, Mh. Math., 112 (1991), 209–215 | DOI | MR | Zbl