On Zeros of Functions of Mittag-Leffler Type
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 710-724
Voir la notice de l'article provenant de la source Math-Net.Ru
As is well known, the asymptotics of zeros of functions of Mittag-Leffler type
$$
E_\rho(z;\mu)=\sum_{n=0}^\infty\frac{z^n}{\Gamma(\mu+n/\rho)},\qquad\rho>0,\quad\mu\in\mathbb C,
$$
describes the behavior of zeros outside a disk of sufficiently large radius. In the paper we solve the problem of finding the number of zeros inside such a disk; this allows us to indicate the numeration of all zeros $E_\rho(z;\mu)$ that agrees with the asymptotics. We study the problem of the distribution of zeros of two functions that can be expressed in terms of $E_1(z;\mu)$, namely of the incomplete gamma-function and of the error function.
@article{MZM_2000_68_5_a7,
author = {A. M. Sedletskii},
title = {On {Zeros} of {Functions} of {Mittag-Leffler} {Type}},
journal = {Matemati\v{c}eskie zametki},
pages = {710--724},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/}
}
A. M. Sedletskii. On Zeros of Functions of Mittag-Leffler Type. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 710-724. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/