On Zeros of Functions of Mittag-Leffler Type
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 710-724

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, the asymptotics of zeros of functions of Mittag-Leffler type $$ E_\rho(z;\mu)=\sum_{n=0}^\infty\frac{z^n}{\Gamma(\mu+n/\rho)},\qquad\rho>0,\quad\mu\in\mathbb C, $$ describes the behavior of zeros outside a disk of sufficiently large radius. In the paper we solve the problem of finding the number of zeros inside such a disk; this allows us to indicate the numeration of all zeros $E_\rho(z;\mu)$ that agrees with the asymptotics. We study the problem of the distribution of zeros of two functions that can be expressed in terms of $E_1(z;\mu)$, namely of the incomplete gamma-function and of the error function.
@article{MZM_2000_68_5_a7,
     author = {A. M. Sedletskii},
     title = {On {Zeros} of {Functions} of {Mittag-Leffler} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {710--724},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On Zeros of Functions of Mittag-Leffler Type
JO  - Matematičeskie zametki
PY  - 2000
SP  - 710
EP  - 724
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/
LA  - ru
ID  - MZM_2000_68_5_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On Zeros of Functions of Mittag-Leffler Type
%J Matematičeskie zametki
%D 2000
%P 710-724
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/
%G ru
%F MZM_2000_68_5_a7
A. M. Sedletskii. On Zeros of Functions of Mittag-Leffler Type. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 710-724. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a7/