On the Constant Type of Almost Hermitian Manifolds
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 668-676

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a most natural generalization of the notion of constant type for nearly Kählerian manifolds introduced by A. Gray to arbitrary almost Hermitian manifolds. We prove that the class of almost Hermitian manifolds of zero constant type coincides with the class of Hermitian manifolds. We show that the class of $G_1$-manifolds of zero constant type coincides with the class of 6-dimensional $G_1$-manifolds with a non-integrable structure. Finally, we prove that the class of normal $G_2$-manifolds of nonzero constant type coincides with the class of 4-dimensional $G_2$-manifolds with a nonintegrable structure.
@article{MZM_2000_68_5_a3,
     author = {V. F. Kirichenko and I. V. Tret'yakova},
     title = {On the {Constant} {Type} of {Almost} {Hermitian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {668--676},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - I. V. Tret'yakova
TI  - On the Constant Type of Almost Hermitian Manifolds
JO  - Matematičeskie zametki
PY  - 2000
SP  - 668
EP  - 676
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a3/
LA  - ru
ID  - MZM_2000_68_5_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A I. V. Tret'yakova
%T On the Constant Type of Almost Hermitian Manifolds
%J Matematičeskie zametki
%D 2000
%P 668-676
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a3/
%G ru
%F MZM_2000_68_5_a3
V. F. Kirichenko; I. V. Tret'yakova. On the Constant Type of Almost Hermitian Manifolds. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 668-676. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a3/