Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_5_a12, author = {V. V. Shokurov}, title = {On {Rational} {Connectedness}}, journal = {Matemati\v{c}eskie zametki}, pages = {771--782}, publisher = {mathdoc}, volume = {68}, number = {5}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/} }
V. V. Shokurov. On Rational Connectedness. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 771-782. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/
[1] Shokurov V. V., “Letters of a bi-rationalist. I: A projectivity criterion”, Cont. Math., 207 (1997), 143–152 | MR | Zbl
[2] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972
[3] Campana F., “On twistor spaces of the class $\mathcal C$”, J. Diff. Geometry, 33 (1991), 541–549 | MR | Zbl
[4] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl
[5] Campana F., “Connexité rationnelle des variétés de Fano”, Ann. Sci. \hbox {Éc}. Norm. Sup., 25 (1992), 539–545 | MR | Zbl
[6] Campana F., Un théorèm de finitude pour les variétés de Fano suffisamment uniréglées, Preprint, 1996
[7] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56 (1992), 105–203 | Zbl
[8] Shokurov V. V., “Anticanonical boundedness for curves”, Appendix to: V. V. Nikulin, Hyperbolic reflection group methods and algebraic varieties, Higher Dimensional Complex Varieties, Proceedings of the International Conference (Trento, Italy, June 15–24), 1994, 321–328
[9] Shokurov V. V., “3-fold log models”, J. Math. Sciences, 81 (1996), 2667–2699 | DOI | MR | Zbl
[10] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl
[11] Kollár J. et al., Flips and abundance for algebraic threefolds, Astérique, 211, 1992
[12] Colliot-Theèléne J.-L., “Arithmétique des variétés rationelles et problèmes birationnelles”, Proc. Int. Conf. Math., 1986, 641–653
[13] Kollár J., “Higher direct images of dualizing sheaves”, Ann. of Math., 123 (1986), 11–42 | DOI | MR | Zbl
[14] Katsura T., “Theorem of Luroth and related topics”, Algebraic Geometric Seminar, World Scientific, Singapore, 1987, 41–52
[15] Birch B. J., Swinnerton-Dyer H. P. F., “The Hasse problem for rational surfaces”, J. Reine Angew. Math., 274 (1975), 164–174 | MR
[16] Mori S., “Projective manifolds with ample tangent bundles”, Ann. Math., 110 (1979), 593–606 | DOI | MR | Zbl
[17] Abyankar Sh. Sh., “On the problem of resolution of singularities”, Tr. Mezhdunarodnogo Kongressa matematikov, M., 1966, 469–481