On Rational Connectedness
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 771-782.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to presenting a proof of one of the most important theorems in the birational geometry of Fano varieties.
@article{MZM_2000_68_5_a12,
     author = {V. V. Shokurov},
     title = {On {Rational} {Connectedness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {771--782},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - On Rational Connectedness
JO  - Matematičeskie zametki
PY  - 2000
SP  - 771
EP  - 782
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/
LA  - ru
ID  - MZM_2000_68_5_a12
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T On Rational Connectedness
%J Matematičeskie zametki
%D 2000
%P 771-782
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/
%G ru
%F MZM_2000_68_5_a12
V. V. Shokurov. On Rational Connectedness. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 771-782. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a12/

[1] Shokurov V. V., “Letters of a bi-rationalist. I: A projectivity criterion”, Cont. Math., 207 (1997), 143–152 | MR | Zbl

[2] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972

[3] Campana F., “On twistor spaces of the class $\mathcal C$”, J. Diff. Geometry, 33 (1991), 541–549 | MR | Zbl

[4] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl

[5] Campana F., “Connexité rationnelle des variétés de Fano”, Ann. Sci. \hbox {Éc}. Norm. Sup., 25 (1992), 539–545 | MR | Zbl

[6] Campana F., Un théorèm de finitude pour les variétés de Fano suffisamment uniréglées, Preprint, 1996

[7] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56 (1992), 105–203 | Zbl

[8] Shokurov V. V., “Anticanonical boundedness for curves”, Appendix to: V. V. Nikulin, Hyperbolic reflection group methods and algebraic varieties, Higher Dimensional Complex Varieties, Proceedings of the International Conference (Trento, Italy, June 15–24), 1994, 321–328

[9] Shokurov V. V., “3-fold log models”, J. Math. Sciences, 81 (1996), 2667–2699 | DOI | MR | Zbl

[10] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl

[11] Kollár J. et al., Flips and abundance for algebraic threefolds, Astérique, 211, 1992

[12] Colliot-Theèléne J.-L., “Arithmétique des variétés rationelles et problèmes birationnelles”, Proc. Int. Conf. Math., 1986, 641–653

[13] Kollár J., “Higher direct images of dualizing sheaves”, Ann. of Math., 123 (1986), 11–42 | DOI | MR | Zbl

[14] Katsura T., “Theorem of Luroth and related topics”, Algebraic Geometric Seminar, World Scientific, Singapore, 1987, 41–52

[15] Birch B. J., Swinnerton-Dyer H. P. F., “The Hasse problem for rational surfaces”, J. Reine Angew. Math., 274 (1975), 164–174 | MR

[16] Mori S., “Projective manifolds with ample tangent bundles”, Ann. Math., 110 (1979), 593–606 | DOI | MR | Zbl

[17] Abyankar Sh. Sh., “On the problem of resolution of singularities”, Tr. Mezhdunarodnogo Kongressa matematikov, M., 1966, 469–481