Properties of Algebraic Equations on the Set of $E$-Functions over the Field of Rational Functions
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 761-770
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents several theorems on the linear and algebraic independence of the values at algebraic points of the set of $E$-functions related by algebraic equations over the field of rational functions, as well as some estimates of the absolute values of polynomials with integer coefficients in the values of such functions. The results are obtained by using the properties of ideals in the ring of polynomials of several variables formed by equations relating the above functions over the field of rational functions.
@article{MZM_2000_68_5_a11,
author = {A. B. Shidlovskii},
title = {Properties of {Algebraic} {Equations} on the {Set} of $E${-Functions} over the {Field} of {Rational} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {761--770},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a11/}
}
TY - JOUR AU - A. B. Shidlovskii TI - Properties of Algebraic Equations on the Set of $E$-Functions over the Field of Rational Functions JO - Matematičeskie zametki PY - 2000 SP - 761 EP - 770 VL - 68 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a11/ LA - ru ID - MZM_2000_68_5_a11 ER -
A. B. Shidlovskii. Properties of Algebraic Equations on the Set of $E$-Functions over the Field of Rational Functions. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 761-770. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a11/